

Taxonomy of two Models

Introduction						
 A Simple Example of Generative vs. Discriminative Models A form (x,y) : (1,0), (1,0), (2,0), (2,1) 						
gener	rate likely (x,y) pair	rs	plying Bayes rule			
	x=1	1/2	0			
	x=2	1/4	1/4			
p(y x): natural distribution for classifying a given example x into a class y						
		y=0	y=1			
	x=1	1	0			
x=2 1/2 1/2						
DONG-A UNIVERSITY 6 ISLAB						

Markov Chain (Sequence Classification)

- Markov chain
 - Often we want to consider a sequence of random variables that aren't independent, but rather the value of each variable depends on previous elements in the sequence
- Markov Assumption
 - A sequence of states: X₁, X₂, X₃, ...
 - The transition from X_{t-1} to X_t depends only on X_{t-1} (Markov Property).
 The transition probabilities are the same for any t (stationary process)

Markov Model				
 Markov Properties Limited Horizon: 				
$P(X_{t+1} = s_k \mid X_1,, X_t) = P(X_{t+1} = s_k \mid X_t)$				
Time invariant (stationary): $= P(X_2 = s_k \mid X_1)$				
Stochastic Transition Matrix				
$a_{ij} = P(X_{t+1} = s_j \mid X_t = s_i)$				
where, $a_{ij} \ge 0, \forall i, j \text{ and } \sum_{j=1}^{N} a_{ij} = 1, \forall i$				
• Initial states $\pi_i = P(X_1 = s_i)$ where $\sum_{i=1}^N \pi_i = 1$				
DONG-A UNIVERSITY 12	ISLAB			

Markov Model	
Length of the observation sequence : T	
 ♦ Observable states : ▶ 1, 2,, N 	
Observed sequence : > O ₁ ,O ₂ ,,O _t ,O _T	
 ❖ Markov property ▷ P(O_{t+1} = i O₁,O₂,,O_{t-1},O_t) = P(O_{t+1} = i O_t) 	
DONG-A UNIVERSITY 19	ISLAB

Markov Model						
❖ Markov Model 개념 ➤ 내일의 날씨는 어떻게 될까요?						
		Ú.	비일날	KI)		
_		맑음	흐림	н]		
	맑음	0.8	0.1	0.1		
	<i>흐림</i>	0.2	0.6	0.2		
「「「	н]	0.3	0.3	0.4		
0 DONG-A UNIV	ERSITY		18			ISLAB

the state sequence that the model passes through, but abilistic function of it.				
sion to the Markov chain introduces a nondeterministic nerates output observation symbols in any given state.				
is a probabilistic function of the state				
nown as a <i>hidden Markov model</i>				
as double embedded stochastic process with an hastic process not directly observable				
HMM is basically a Markov chain where the output observation is a random variable X generated according to a output probabilistic function associated with each state				
ITY 21 ISLAB				

Hidden Markov Model					
Two assumptions in the first-order hidden Markov model Markov assumption for the Markov chain $P(s_t \mid s_1^{t-1}) = P(s_t \mid s_{t-1})$					
 Output-independence assumption Probability that a particular symbol is emitted at time <i>t</i> depends only on the state <i>s_t</i> Independent of the past observations 					
$P(X_{t} X_{1}^{t-1}, s_{1}^{t}) = P(X_{t} s_{t})$					
DONG-A UNIVERSITY 27 ISLA	в				

Substitution $\beta_i(t) = P(o_t \cdots o_T \mid X_t = i, \mu)$ • The total probability of seeing the rest of the observation sequence given that we were in states, at time t. • Combination of forward and backward probabilities is vital for solving the third problem of parameter re-estimation • Initialization $\beta_i(T+1) = 1$, $1 \le i \le N$ • Induction $\beta_i(t) = \sum_{j=1}^N a_{ij} b_{ijo_i} \beta_j(t+1), \quad 1 \le t \le T, 1 \le i \le N$ • total $P(O \mid \mu) = \sum_{i=1}^N \pi_i \beta_i(1)$ Image: DONG-A UNIVERSITY 35

The backward procedure

Viterbi algorithm (Cont.)				
1. Initialization				
$\delta_j(1) = \pi_j, 1 \le j \le N$				
2. Induction				
$\delta_{j}(t+1) = \max_{1 \le i \le N} \delta_{i}(t) a_{ij} b_{ijo_{t}}, 1 \le j \le N$				
Store backtrace				
$\psi_j(t+1) = \operatorname*{argmax}_{i \in \mathbb{N}} \delta_i(t) a_{ij} b_{ijo_i}, 1 \le j \le N$				
3. Termination and path readout (by backtracking)				
$\hat{X}_{T+1} = \underset{1 \leq i \leq N}{\arg \max} \delta_i(T+1)$				
$\hat{X}_{t} = \psi_{\hat{X}_{t+1}}(t+1)$				
$P(\hat{X}_{t}) = \max_{1 \le i \le N} \delta_{i}(T+1)$				
DONG-A UNIVERSITY 40	ISLAB			

Baum-Welch algorithm (Cont.)					
State transition probability					
Probability of traversing a certain arc at time t given observation sequence O					
$p_{t}(i, j) = P(X_{t} = i, X_{t+1} = j \mid O, \mu) = \frac{P(X_{t} = i, X_{t+1} = j, O \mid \mu)}{P(O \mid \mu)}$					
$\alpha_i(t)a_{ij}b_{ijo}\beta_i(t+1) \qquad \alpha_i(t)a_{ij}b_{ijo}\beta_i(t+1)$					
$= \frac{1}{\sum_{m=1}^{N} \alpha_m(t) \beta_m(t)} = \frac{1}{\sum_{m=1}^{N} \sum_{m=1}^{N} \alpha_m(t) \alpha_{mn} b_{mno} \beta_n(t+1)}$					
$\sum_{i=1}^{T} \gamma_i(t) = expected number of transitions from state i in O$					
$\sum_{i=1}^{T} p_i(i,j) = expected number of transitions from state i to j in O$					
• Note that $\gamma_i(t) = \sum_{j=1}^{N} p_i(i, j)$ • Expectations(counts) If sum over the time index					
B DONG-A UNIVERSITY 43					

Learning problem solution: Baum-Welch algorithm					
 Parameter estimation 					
Given an observation sequence, find the model that is most likely to produce that sequence.					
Given a model and observation sequence, update the model parameters to better fit the observations.					
* Re-estimation : from $\mu = (A, B, \Pi)$, derive $\hat{\mu} = (\hat{A}, \hat{B}, \hat{\Pi})$					
$\hat{\pi}_i$ = expected frequency in state <i>i</i> at time <i>t</i> = 1					
$=\gamma_i(1)$					
$\hat{a} = \frac{\text{expected } \# \text{ of transitions from state } i \text{ to } j}{\sum_{i=1}^{I} p_i(i, j)}$					
expected # of transitions from state $i \qquad \sum_{i=1}^{T} \gamma_i(t)$					
\hat{b}_{k-1} expected # of transitions from state <i>i</i> to <i>j</i> with <i>k</i> observed $\sum_{(r,a_i=k,1\leq i\leq T)} p_i(i,j)$					
expected # of transitions from state <i>i</i> to <i>j</i> $\sum_{t=1}^{T} p_t(i, j)$					
ONG-A UNIVERSITY 44 ISLAB					

HMM Calculation Exercise					
Variable Calculati	ions for O=	(lem, ice_	_t, cola)		
		Ou	tput		
	le	em ic	e_t co	ola	
Time (<i>t</i>):	1	2	3	4	
$\alpha_{CP}(t)$	1.0	0.21	0.0462	0.021294	
$\alpha_{IP}(t)$	0.0	0.09	0.0378	0.010206	
$P(o_1 \cdots o_{t-1})$	1.0	0.3	0.084	0.0315	
$\beta_{CP}(t)$	0.0315	0.045	0.6	1.0	
$\beta_{IP}(t)$	0.029	0.245	0.1	1.0	
$P(o_1 \cdots o_T)$	0.0315				
$\gamma_{CP}(t)$	1.0	0.3	0.88	0.676	
$\gamma_{IP}(t)$	0.0	0.7	0.12	0.324	
BONG-A UNIVERSITY		47		ISLAB	

HMM Calculation Exercise

The state transition and observation probabilities of the crazy soft drink machine

HMM Calculation Exercise						
Variable Calculations for O=(<i>lem, ice_t, cola</i>)						
$\widehat{X_t}$	CP	IP	СР	CP		
$\delta_{CP}(t)$	1.0	0.21	0.0315	0.01323		
$\delta_{IP}(t)$	0.0	0.09	0.0315	0.00567		
$\psi_{CP}(t)$		CP	IP	СР		
$\psi_{IP}(t)$		СР	IP	СР		
\hat{X}_t	CP	IP	СР	СР		
$P(\hat{X})$	0.019404					
DONG-A UNIVERSITY 48 ISLAB						

HMM Calculation Exercise						
Reestimation from Ba	um-Welch algorith	Im				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c} & & & & \\ \Pi & CP & 1.0 \\ \Pi & 0.0 \\ \end{array} \\ A & \begin{array}{c} CP & \Pi \\ P & 0.7 \\ 0.7 \\ 0.5 \\ 0.5 \end{array} \end{array} $	Reestin 1.0 0.0 CP 0.5486 0.8049	IP 0.4514 0.1951				
$\begin{array}{ccc} & \text{cola} & \text{ice_t} \\ B & \underline{CP} & 0.6 & 0.1 \\ \overline{IP} & 0.1 & 0.7 \end{array}$	lem cola (0.3) 0.4037 0.2 0.1463	ice_t lem 0.1376 0.4587 0.8537 0.0				
DONG-A UNIVERSITY	49	ISLAB				

Maximum Entropy Modeling			
Classification in MaxEnt			
A generalization of classification in (Boolean) logistic regression			
MaxEnt naturally gives us a	probability di	stribution over the classes	
$\hat{c} = a$	$\operatorname{rgmax}_{c \in C} P(c x)$		
 Any kind of complex feature has to be defined by hand Ex) 			
$f_{125}(c,x) = \begin{cases} 1 & \text{if } word_{i-1} = \& & \text{isupperfirst}(word_i) \& c = \text{NNP} \\ 0 & \text{otherwise} \end{cases}$			
0 DONG-A UNIVERSITY	60	ISLA	В

