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Introduction

« Examples of Pattern Classification

Single Classification: Sequence Classification:

pos pos pos pos pos
POS mggmgs‘Q D D O O
fwordiagl | g H H 1 H
¢ e—e—o—0 o
l word word  word word word

sentence ordering (wordrword) — g

Asian Language Segmentation Part of Speech Tagging

(3 NC NN NM NC NT VNP NC AV
BREEANESSRE RS W LFRHENADINARRSE.

Base Noun Phrase Extraction
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< Introduction of Generative vs. Discriminative Models
» Taxonomy of Two Models
» Graphical Model Relationship

++ Generative Models:
» Naive Bayes
» Hidden Markov Model (HMM)

+»+ Discriminative Model:
» Maximum Entropy Model (MEM)
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Introduction

« Pattern classification (Duda & Hart)

decision start

classification choose features .
feature extraction choose model .

post-processing collect data .

train classifier .
sensing evaluate classifier

input end

Figl. The process of the pattern classification system Fig2. The design cycle of the pattern classification system
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Introduction

«» Generative vs. Discriminative Models
(Build a model) Generative
Learn p(x|y) Learn p(y|x)

/ and p(y) indirectly
data X' p(y| x)< p(x| y)p(y)
label ¥

\ Learn p(y/x)

directly
Discriminative
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Taxonomy of two Models

< Generative Models

» To model class-conditional pdfs and prior probabilities
» “Generative” since sampling can generate synthetic data points
» Popular models:
= Gaussians, Naive Bayes, Mixtures of multinomials
= Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
= Sigmoidal belief networks, Bayesian networks, Markov random fields
« Discriminative Models
» Directly estimate posterior probabilities
» No attempt to model underlying probability distributions
» Focus computational resources on given task—better performance
» Popular models:
= Logistic regression (MEM), SVMs
= Traditional neural networks, Nearest neighbor
o = Conditional Random Fields (CRF)
o
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Introduction

++ A Simple Example of Generative vs. Discriminative Models
» Aform (x,y) : (1,0), (1,0), (2,0), (2,1)

> p(x,y): to be transformed into p(y|x) by applying Bayes rule and to
generate likely (x,y) pairs

x=1 12 0
x=2 1/4 1/4

» p(y[x): natural distribution for classifying a given example x into a

classy
x=1 1 0
x=2 1/2 1/2
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Graphical Model Relationship

4 Naive Bayes Classifier Hidden Markov Model
[ ¥y Y " v
% %QUEN@ Y Yy
=4
& x . . PnX) X pY.X

X Xy X, Xy

M1 M1
CONDITION CONDITION
w PO POUX)
=
<
z %QUEN@
=
x
3
o Logistic Regression Conditional Random Field
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Generative Model: Naive Bayes

+« To learn a bayes classifier, we need to model P( x|y ) and P(y)

» We can assume that x;'s are conditionally independent given y,
n
P(x,,%,,....x, | ¥) = 'IZIIP(x,. | ¥)

» This is called the Naive Bayes assumption
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Markov Chain (Sequence Classification)

«» Markov chain

» Often we want to consider a sequence of random variables that aren’t
independent, but rather the value of each variable depends on
previous elements in the sequence

«» Markov Assumption
» A sequence of states: Xy, Xy, X3, ...

» The transition from X4 to X; depends only on X, (Markov Property).
= The transition probabilities are the same for any t (stationary process)
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Generative Model: Naive Bayes

« Learning
> Need to estimate the following probability distributions (via counting)

p(y») [Prior distribution of y

p(x; |y) [CIass conditional distribution of x;

+ Predicting
> Given X =(X, Xy, ..., Xq), compute p(y|x)

PO 10=POEE o p] o 1)

I
> Apply 0ecision tneory 10 make Tinal preaiction or y
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Markov Model

+» Markov Properties
» Limited Horizon:

P(Xti1 =Sk | Xppoe Xi) = P(Xpi1 =5 [ Xy)

Time invariant (stationary):
(statonam): _p(x, s, %y)
+ Stochastic Transition Matrix
& =P(Xpa=s; | X; =5)

L. N .
where, a;; >0, Vi,j and ZHaij =1 Vi

ij

+ Initial states N
7 = P(X; =s;) where Zi—l”‘ =1
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Markov Model

«» Examples
» N-gram models in NLP
» Valid phone sequences in speech recognition
» Sequences of speech acts in dialog systems

« Bigram model
» Bigram models are rather inaccurate language models.

= Ex) the word after “a” is much more likely to be “missile” if the word
preceding “a” is “launch”.

» The Markov assumption is pretty bad.
> If we could condition on a few previous words, life gets a bit better:

» E.g., we could predict “missile” is more likely to follow “launch a”
than “saw a”.

» This would require a “second order” Markov model.
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Markov Model

/0.6

1.0

start

P(ti, p) =P(Xy =)P(Xp =1 X; =)P(X3 = p| X, =1)
= 1.0x0.3x0.6=0.18
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Markov Model

P(Xy1o X1) = POX)P(X5 | X1)P(Xg | Xg, X).P(Xg | Xy X1 1)
= P(X1)P(X5 | X1)P(Xs | X5)P(X7 [ X7 )

T-1
:”xl l I axlxl+l
t=1
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Markov Model

<+ Markov Model JH&
> U M= HEH Ee?

@~@~O~@~ 7

:\@: DONG-A UNIVERSITY 16 ISLAB




Markov Model Markov Model

< Markov Model JH& < Markov Model JH&
> U M= HEH Ente? > U SM= HEH ENte?

g SY 0

0.1 U 0.3

% 08 01 0.1
0.2 0.8 01 ¥ 02 06 02
06 @ 0.3 ? 0.4 ¥/ 03 03 04
0.2
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Markov Model Markov Model

= P(0,,0,,...,07)
= P(0)P(02]04)P(05]04,0,)...P(04]0;,...,0r.1)
= P(0;)P(0,|0,)P(0O5]0,)...P(O1|Or)

+ Length of the observation sequence : T

< Observable states :
>1,2,...,N

+ Observed sequence : @ 0.1 0_2

> 0,,0,,...,0,...0;

P(&+3, 2 &, 7))

+ Markov property
> P(Ops =] 04,0,,...,0.1,0) = P(Opq =i | O) =P(&43P(SE|&SP(LNEE)
=1.0x0.1x0.2=0.02

[" - f‘ m,
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Hidden Markov Models

+« Why hidden?
» You don’t know the state sequence that the model passes through, but
only some probabilistic function of it.

» A natural extension to the Markov chain introduces a nondeterministic
process that generates output observation symbols in any given state.

«» The observation is a probabilistic function of the state
» new model is known as a hidden Markov model

» Can be viewed as double embedded stochastic process with an
underlying stochastic process not directly observable

« HMM is basically a Markov chain where the output
observation is a random variable X generated according to a
“output probabilistic function associated with each state

{i§]) poNG-A UNIVERSITY 2 ISLAB

Hidden Markov Model

¢ Visible Markov Model

» If, when you put in your coin, the machine always put out a cola if it
was in the cola preferring state and an iced tea when it was in the
iced tea preferring state

» Butinstead, it only has a tendency to do this.
» So we need symbol emission probabilities for the observations

P(O; =k | X; =i, X1 =5;) =y

> For this machine, the output is actually independent of s;

Hidden Markov Models

< Hidden Markov Model Ji &

» 0l &gt 834 XHED|(Crazy soft drink machine)

start / Cola 0.5 iced Tea

Pref.

MO.?

P
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Pref.

058S

0.3

22
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e
:\@: DONG-A UNIVERSITY 2 ISLAB

Hidden Markov Model

Cola 0.5

Pref.

o

‘Cola Ice_t Lemon

Iced Tea
Pref.

0.5 w

‘ Cola Pref. Ice_t Pref.

ColaPref.| 0.6 0.1 0.3
Ice_tPref.| 0.1 0.7 0.2

P
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Cola Pref. 0.7
Ice_t Pref. 05

24

0.3
0.5
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Hidden Markov Model

< AHE/ 9} Cola Pref. 0 A & 617/ A& O, {Lemon, Ice_t)
EHE SEI} LIS HES?

‘Cola Ice_t Lemon

0.6 0.1 0.3
0.1 0.7 0.2

0.5

Cola\ ——8M

pref./ — Cola Pref.
0

07 Q2 .3 W 05 Ice_t Pref.

Cola Pref., Cola Pref. : (0.7x0.3)x(0.7x0.1)+
Cola Pref., Ice_t Pref. : (0.7x0.3)x(0.3x0.1)+
Ice_t Pref., Ice_t Pref. : (0.3x0.3)x(0.5x0.7)+
Ice_t Pref., Cola Pref. : (0.3x0.3)x(0.5x0.7) = 0.084

e
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Hidden Markov Model

< Two assumptions in the first-order hidden Markov model
» Markov assumption for the Markov chain

P(S( | 5;71) = P(sl | 51—1)

» Output-independence assumption
= Probability that a particular symbol is emitted at time t depends only on the state
sl
= Independent of the past observations

P(X( | Xl‘ilrsi): P(X| |S‘ )

e
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Hidden Markov Model

+* Notation for an Hidden Markov Models

» T =length of the observation sequence,
{04, 0,,..., Oy..., O7} (MBI && )

> N = number of states in the model (X/Z 7/ &EH )

» L = number of observation symbols ({/Z7/ E2 £7)

> S = aset of states, {s} (N} &7/ &'EHE &
s, =i:stateiattimet

> A = state transition probability matrix (/& 7/ &£ 5 gf)
ay= P(sy=J]s=1)

» B = Observation probability distribution (££+ & &ZX)
b, (O = P(O; |s,=7J)

=

» 7 = Initial state distribution (£J/ &} £F): m;=P(s,=1)
» A = hidden markov model : 1=P(A, B, 7)

e
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HMM Formalism

_,WA/\AF\AF\A

B B B B B
{S,L, IT A, B}

% IT= {x,}are the initial state probabilities

% S:{s;...sy} are the values for the hidden states
s L:{l...I,} are the values for the observations
< A = {g;} are the state transition probabilities

% B ={b;} are the observation state probabilities

P
{18/ DONG-A UNIVERSITY ISLAB




Hidden Markov Model

« If it is not possible to observe the sequence of states of a
Markov model, but, only the sequence of emitted alphabets
or signals, the model is called HMM

» We can guess the best state sequence;
argmaxg P(S | O), where O : the sequence of observed alphabet.
= argmaxg {P(O | S) P(S)}/ P(O)
=argmaxg P(O | S)P(S)

29

P
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Given an observation sequence and a model,
compute the probability of the observation sequence

O =(0,...0;), = (A B,II)
Compute P(O| 1)

e
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Three fundamental questions for HMM

+ Given a sequence of observed signals O = {o,, ..., 07}
and model p =(A, B, 1)

» Evaluation problem:
= compute the prob. of observing P(O|u ) this particular signal sequence.

» Decoding problem:

= determine the most probable state sequence S =s,, ..., sy that can
give rise to this signal sequence.

» Learning or estimation Problem:

= Determine the set of model parameter p = (A, B,n) maximizing the prob.
of this signal sequence P(O| p ).

e
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Finding the probability of an observation

«+ Decoding

P(O|u)=Y.P(O,X | u) X=(X1,... Xio1)
X

any state sequence

Y PO X, 4)P(X | )

T

.
P(O| X, ) = H PO, | Xy, Xyqo 1) = b)(l)(zo]b)(zxaoz "'bexmo, = be‘xmo‘

t=1 T

P(X | ‘u) = ﬂxlaxlx2axzxs axrxnl = ﬂxll—laxxxm
1

t=

=
T a . b ; o
z Xll;l XiXia X‘X‘-l"A{Requzres multiplications

e (2T +1)-N™*

» But, unfortunately, direct evaluation of the resulting expression is
hopelessly inefficient.

e
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Dynamic Programming

« The general technique for the secret to avoiding this
complexity
» We remember partial results rather than re-computing them
= Ex) chart parsing in computational linguistics
= Lattice (or Trellis)
S, A0
S %0
State s, #0
N i
1 2 3 T+
o Time, t
\@/ DONG-A UNIVERSITY 33 ISLAB

The backward procedure

«» Backward variables
ﬁi(t)= P(Ot e 0p | Xt = iuu)

» The total probability of seeing the rest of the observation sequence
given that we were in states; attime t.

» Combination of forward and backward probabilities is vital for solving
the third problem of parameter re-estimation

= Initialization LT+1)=1 1<i<N

N
* Induction Bit)= aby, B;(t+1), 1<t<TI<i<N
j=1

= total

POIM)=3 7

:\@: DONG-A UNIVERSITY 35 ISLAB

Forward procedure

« forward variables
a;(t)=P(0,0,---0, 4, X, =] )
> is stored at (s;,t) in the trellis

> expresses the total probability of ending up in state S; at time t
> is calculated by summing probabilities for all incoming arcs at a trellis

node
= Initialization a)=m, 1<i<N
N
= Induction aj(t+1):;a, (Dayhy,, 1<t<TI<j<N
= total N ; —
PO|u)=Y o (T +1) Requires multz;zllcutmns
= 2N°T
e
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Evaluation Solution

() @) o G ()
P(O| 1) =ZN:ai(T) Forward Procedure
i=1

N
PO|u) =Y B0 Backward Procedure
i=1

PO11)=Ya®A®  Combination

:\@: DONG-A UNIVERSITY 36 ISLAB




Combining them Finding the best state sequence

+ Choosing the states individually
P(O, X; =i|u)=P(0;...07, X; =i|u)

=P(0;..0;_1, X =1,0;...07 |U)

> For each t, we would find X, that maximizes P(X, |O, )
=P(0;...0,_1, X; =i|u)

7i()=P(X =10, )

. P(X,=i,0
x P(0;...07 |0...0;_1, X; =i,U) =W
SOLI0) GG
Therefore:

X080
N
PO|u)= Zai ®)5i(), 1<t<T +1 > The individually most likely state
i= )zt:argmax;/i(t), 1<t<T+1

I<isN

e
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Decoding solution: finding best sequence Viterbi algorithm (Cont.)

1. Initialization
Q@ O

_' @ m §;M=x;, 1<j<N
2. Induction
: | | b‘j(t+1)=mgﬁé,(t)a,jb,jul, 1< j<N

Store backtrace

Viterbi algorithm

v;(t+) =argmaxs;(ha;by, , 1< j<N
argmax P(X|0) iN '
3. Termination and path readout (by backtracking)
&;(t) = max P(X...X 4,04..0, 1, X = J,0,) Xy =argmaxs, (T +1)
Xq X

1<i<N

The state sequence which maximizes the probability X =y %, E+D
of seeing the observations to time t-1, landing in state

. ) _ X P(X,) =maxs,(T +1
j, and seeing the observation at time t X)) 1<i<N (T+D

e
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Baum-Welch algorithm

+ Probability of traversing a certain arc

Learning problem solution
#=(AB,7)

< The values of the model parameters:
» Using Maximum Likelihood Estimation, we want to find the values that

maximize:
argmax P(Otraining [ 1)
u

» There is no known analytic method to choose to maximize P(O|p).
» We can locally maximize it by an iterative hill-climbing algorithm

= Baum-Welch or Forward-Backward algorithm
= |tis a special case of the Expectation Maximization (EM) method
v Start with the probability of the observation sequence using some model
(perhaps randomly chosen model)
v We iteratively calculate which state transitions and symbol emissions were

probably used the most.

v' By increasing the probability of those, we can choose a revised model which
gives a higher probability to the observation sequence.

v' This maximization process is often referred to as training the model on

a

) O °
1 ;
OO :

N

%t +1)

Figure 9.7 The probability of traversing an arc. Given an observation sequence
and a model, we can work out the probability that the Markov proess went from

state s; to s; at time ¢

ISLAB

P
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o training data
\@/ DONG-A UNIVERSITY a ISLAB

Baum-Welch algorithm (Cont.)

+ State transition probability
» Probability of traversing a certain arc at time t given observation sequence O

- f : P(X,=i,X,,=],014)
D) =P(X,=1,X,;=]|0,1) =
p (i, j) = P(X, =i 110, 4) PO| )
_G (®)ayby, B;(t+1) _ a; (t)ayby, B;(t+1)
Do ®B® 2 D Oy By (4D

E
> = expected number of transitions from state i in O
t=1

T

Z p.(i, J) = expected number of transitions from state i to j in O
t=1

N
« Notethat 7 (=P 1)
=
= Expectations(counts), If sum over the time index

43 ISLAB
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Learning problem solution: Baum-Welch algorithm

« Parameter estimation
» Given an observation sequence, find the model that is most likely to

produce that sequence.
» Given a model and observation sequence, update the model parameters to

better fit the observations.

% Re-estimation : from «=(A,B,TI), derive /= (A,B,I1)

7, =expected frequency in state i at timet =1

=7@®
.. . . T -

. _ expected # of transitions fromstateito j ., P(i, J)

ij — P T T

expected # of transitions from state i 21:1 7:(t)

- expected # of transitions from state i to j with k observed Z{m sy P @i, 1)

ik expected # of transitions from statei to j Z‘Tﬂ p.(, j)

44 ISLAB
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HMM Conclusion

from = (A, B, z), we derive i = (A, B, 7)
As proved by Baum, we have that :
P(O| )= P(O| u)

» This is a general property of the EM algorithm

» lterating through a number of rounds of parameter reestimation
will improve our model

» One continues reestimating the parameters until results are no

longer improving significantly. But this process of parameter
reestimation does not guarantee that we will find the best model.

« HMM Applications
» POS Tagging
» Speech recognition

* ISLAB
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HMM Calculation Exercise

+ Variable Calculations for O=(lem, ice_t, cola)
Output
lem ice_t cola
Time (t): 1 2 5 4
oxcp(t) 1.0 0.21 0.0462 0.021294
ogp(t) 0.0 0.09 0.0378 0.010206
P(oy-+-0¢-1) 1.0 0.3 0.084 0.0315
Bep (1) 0.0315 0.045 0.6 1.0
Bip(t) 0.029 0.245 0.1 1.0
P(oy---o071) 0.0315
ycp(t) 1.0 0.3 0.88 0.676
yrp(t) 0.0 0.7 0:12 0.324
‘\@5, DONG-A UNIVERSITY a ISLAB

HMM Calculation Exercise

% The state transition and observation probabilities of the crazy
soft drink machine

0.3
o Bty e

start

|

II CP 1.0
P 0.0 cola iced tea lemonade
(ice_t) (lem)
CP P CP | 0.6 0.1 0.3
A CP 07. 03 IP | 0.1 0.7 0.2
(B 05 05
% ISLAB
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HMM Calculation Exercise

+“ Variable Calculations for O=(lem, ice_t, cola)

X, CP P CP CP
ocp(t) 1.0 021  0:0315 " 0.01323
Orp(t) 0.0 0.09 0.0315 0.00567
Yep(t) P P EP
Yrp(t) GiP P CP

X CP P CP Cp

P(X) 0.019404
i@/ DONG-A UNIVERSITY 48 ISLAB




HMM Calculation Exercise

+ Reestimation from Baum-Welch algorithm

1 2 3

) CP P |y g P |p CP TR )

i CP” Q3 0.7‘ 1.0 < Q.28 /0.02 l 0.3 [0.616) 0.264 | 0.88
] 0.12

IP 00 0000 06 01 |07 0B6 006
Original Reestimated
oI cP 1.0 1.0
P 0.0 0.0
CP IP CP P
A CP 07. 03 0.5486 0.4514
(I 05 05 0.8049 0.1951
cola ice_t lem cola ice_t lem
B CP 0.6 0.1 Q.? 0.4037 0.1376 0.4587
TEEE (Ol 0 0.1463 0.8537 0.0
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Discriminative Model: MEM Background
+« Maximum Entropy Model (MEM)

» More widely known as multinomial logistic regression

» Belong to the family of classifiers known as the exponential or log-
linear classifiers
= Extract some set of features from the input and combine them linearly

= Linear regression and logistic regression

1
pldy) = —exp(3 wif)
i

e
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Discriminative Model: MEM Background

« Linear Regression

» Regression vs. Classification
= Output of regression: real-valued
= Output of classification: one of a discrete set of classes

» An example for regression
= Real estate ads: lower prices (fantastic, cute, or charming), higher prices (maple or

granite)
Number of vague ndjeclives| Amount house sold over asking price
4 0
3 $1000
2 $1500
2 $6000
1 $14000
0 $18000

Figure 6.17  Some made-up data on the number of vague adjectives (fantastic, cute,
charming) in a real estate ad, and the amount the house sold for over the asking price.

P
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Discriminative Model: MEM Background

+« Linear Regression

1

§

¥ = ~4300x + 16550

§

§

Increase in House Sale Price

1 2 3 4 $

Number of Adjectives

Figure6.18 A plot of the (made-up) points in Fig. 6.17 and the regression line that best
fits them, with the equation y = —4900x+ 16550

» Prediction score: N
price = wp + z wyx f
=1

e
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Discriminative Model: MEM Background

«» Linear Regression

N
> General form: y=3 wxf
=0
e\
dot product: a-b= Z aby=arb +azbp +--- +apby
=1
y=w-f

» Learning in linear regression
= Each observation x would have a feature vector f, and we would train the weight
vector w to minimize the prediction error from 1 or 0

= Sum-squared error

M 2

) W)]

cost(W) = Z (-ypmd Y obs)
J=0

e
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Discriminative Model: MEM Background

+ Logistic Regression
> Need to change the real-valued outcome of linear regression into
classification (one from a small set of discrete values)

= Probabilistic classification for binary classification

i
Ply = truelx) = z"'. x [y
#=0
= w-f
= Problem: The left hand lies between 0 and 1 but the right hand lies between -
and oo.
= Solution: Using odds (ratio of two probabilities) and logit function (log of the odds)

ply = true)|x
—_—=wf
1— p(y=true|x)

In (w) =w-f
1 - p(y= truelx)

P
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Discriminative Model: MEM Background

+ Logistic Regression
» To estimate the logit of the probability rather than the probability

In (7;&7: truelx) ) =w-f
1— p{y=true|x)
ply=tely) _ .
1= ply=truely) exp(EV owi )
= | = — =07
ply=truelx) = (1 — p(y= true|x))e* ply=truelx) = 1+ exp(zN ,w, )
i—0 Wi fi
ply= truelx) = e" — p(y= true|x)e™ a5 1
\y = false|lx) = ——————
ply= truelx) + p(y = true|x)e™ ' = ™ F P 1+ z‘xp(z‘,\ owif)
ply=truelx)(1+e"') = e
C,..F

= truejx) = ——
ply )= Tt

1
ply= falselx) = 177

P
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Discriminative Model: MEM Background

+ Logistic Regression

> Logistic function ;
o ply=falsel) = T—
ply=truelx) = p— 1 Lte!
T+em? —
) 1+
- 1 +I""'F

= This function maps values from to lie between 0 and 1.
» Classification of logistic regression

ply=true|x) > p(y= false|x)

ply = true|x) & 1
(y= falselx) ~ i
i T selx) wef>0

truelx)

1 — p(y= true|x)

= This is the equation of a hyper-plane (a generalization of a line to N dimension)
N
Y wi>0
-0

e
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Maximum Entropy Modeling

+« Multinomial logistic regression
» From binary value (0 or 1) to many discrete values
» Called MaxEnt in speech and language processing

deC

plelx) = %expz wif, Z= ;p{dx] =¥ exp (ﬁnw‘,,.ﬂ-)

N
exp (2 Wei f,)
B 0

plelx) = 5
Z exp (Z M;;,[‘)
i=0

deC
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Maximum Entropy Modeling

<+ Indicator function
» Ex) POS tagging (Continue)

Secretariat/NNP is/BEZ expected/VBN to/TO race/2? tomorrow/

i Z [ K] 5 [
VB T 0 T 0 T 1 I
VB W £ 01 I
NN f 1 0 0 0 0 1
NN W ] 13
Figure 6.19  Some sample feature values and welghts for tagging the word race In
(6.81).
8 1.3
e'e
PINNjY) = —— o =20
‘ ‘,.8‘, 1]+‘,HPUIF.I
‘.,E‘.,Ul[,l

P(VBx) = Py e TP =.80

e
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Maximum Entropy Modeling

+ Indicator function
»> A feature that takes on only the value 0 and 1
» Ex) POS tagging
Secretariat/NNP is/BEZ expected/VBN to/TO race/?? tomorrow/

1 if word;="race” & c=NN gt _ J 1 if word;="race” & c=VB
flex) = {U uthc‘rwl;c fi(ax) = {n otherwise

AT 1if1=TO & c=VB ) 1 if ;.1=TO & c¢=NN
fi(er) = {0 otherwise ke = {f} otherwise
_ [ 1 if suffix(word;) = “ing” & c=VBG

fi(cx) = {0 otherwise

ey = 1 if islower_case(word;) & c=VB
16X = 10 otherwise

e
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Maximum Entropy Modeling

+ Classification in MaxEnt
» A generalization of classification in (Boolean) logistic regression
» MaxEnt naturally gives us a probability distribution over the classes

¢ = argmax P(c|x)
ceC

» Any kind of complex feature has to be defined by hand
= EXx)

s 1 if word;_y = <s> & isupperfirst(word;) & c=NNP
fizs(ex) = {D otherwise

e
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Maximum Entropy Modeling

+ Learning in MaxEnt

» To find the parameters w that maximize the log likelihood of the M
training samples

= argmax 3 log P(y|x(7)
» Important aspect is a kind of smoothing of the weights called

regularization

= To penalize large weights: a MaxEnt model will learn very high weights that overfit
the training data

= argmax ¥ log Py |¥")) — aR(w)
N
RW)=3 \tf
=l
A L
W= argn}alecuglﬂ)/“hm) —o z |12,
w4 =1

PN
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Maximum Entropy Modeling

« Why We Call It Maximum Entropy?
» We want to assign a tag to the word “zzfish”

= Learn one more fact : three constraints
P(NN)+P(JJ)+ P(NNS) + P(VB) =1

P(word is zfishand t; = NN or = NNS) = 1%

: 1
AVB) = %
= The optimization problem of finding this distribution as follows: (Berger et al. 1996)

“To select amodel from a set ¢ of allowed probability distributions, choose
the model p* € ¢ with maximum entropy H(p) ™

p* = argmax H( p)
PEC

H(x) = =Y P(x)log, P(x)

Py
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Maximum Entropy Modeling
« Why We Call It Maximum Entropy

» We want to assign a tag to the word “zzfish”
= No constraint would be the equiprobable distribution.
[NNTJJ [NNS[ VB [NNP[IN[MD|UH[SYM[VBG[POS[PRP[CC|CD][..]
1%

1 LI | LI 0 S 0 U 1 1 1 1
L 'r'rlrt 1-|1: |m: |:n|:|:13

1
51
= Learn only one fact: the set of possible tags is NN, JJ, NNS and VB

P(NN)+ PJJ)+ P(NNS) + F(VB) =1

NS [VBINNPTIN[MDJUH[SYM|[VBG]POS[PRP[CC[CD]...
[l oo o oo ool

= Learn one more fact: two constraints

PINN) +PUJT) + PINNS) + F(VB) =1

Plword is zzfish and t; = NN or £, = NNS) = ]%
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