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Fig2. The design cycle of the pattern classification system  
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Introduction 

 A Simple Example of Generative vs. Discriminative Models 
 A form (x,y) : (1,0), (1,0), (2,0), (2,1)  

 
 p(x,y): to be transformed into p(y|x) by applying Bayes rule and to 

generate likely (x,y) pairs  
 
 
 
 

 p(y|x): natural distribution for classifying a given example x into a 
class y 
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y=0 y=1 
x=1 1/2 0 
x=2 1/4 1/4 

y=0 y=1 
x=1 1 0 
x=2 1/2 1/2 
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Taxonomy of two Models 

 Generative Models 
 To model class-conditional pdfs and prior probabilities 
 “Generative” since sampling can generate synthetic data points 
 Popular models: 

 Gaussians, Naïve Bayes, Mixtures of multinomials 
 Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM) 
 Sigmoidal belief networks, Bayesian networks, Markov random fields 

 Discriminative Models 
 Directly estimate posterior probabilities  
 No attempt to model underlying probability distributions 
 Focus computational resources on given task–better performance 
 Popular models: 

 Logistic regression (MEM), SVMs 
 Traditional neural networks, Nearest neighbor 
 Conditional Random Fields (CRF) 
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Graphical Model Relationship 
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Generative Model: Naïve Bayes 

9  

 To learn a bayes classifier, we need to model P( x|y ) and P(y) 
 
 We can assume that xi’s are conditionally independent given y,  

 
 

 This is called the Naïve Bayes assumption 
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Generative Model: Naïve Bayes 
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 Learning 
 Need to estimate the following probability distributions (via counting) 

 
 
 

 
 Predicting 

 Given x =(x1, x2, ..., xd), compute p(y|x) 
 
 
 

 Apply decision theory to make final prediction of y 
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Markov Chain (Sequence Classification) 

Markov chain 
 Often we want to consider a sequence of random variables that aren’t 

independent, but rather the value of each variable depends on 
previous elements in the sequence  
 

Markov Assumption 
 A sequence of states: X1, X2, X3, … 
 The transition from Xt-1 to Xt depends only on Xt-1 (Markov Property). 

 The transition probabilities are the same for any t (stationary process) 

 

 
 X2 X3 X4 X1 
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Markov Model 
Markov Properties 

 Limited Horizon: 
 
 

    Time invariant (stationary): 

 
 Stochastic Transition Matrix 

 
 
 

 Initial states 
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Markov Model 
 Examples 

 N-gram models in NLP 
 Valid phone sequences in speech recognition 
 Sequences of speech acts in dialog systems 

 

 Bigram model 
 Bigram models are rather inaccurate language models. 

 Ex) the word after “a” is much more likely to be “missile” if the word 
preceding “a” is “launch”. 

 The Markov assumption is pretty bad. 
 If we could condition on a few previous words, life gets a bit better: 
 E.g., we could predict “missile” is more likely to follow  “launch a” 

than “saw a”. 
 This would require a “second order” Markov model. 
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Markov Model 
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Markov Model 
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Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

맑음 흐림 비 흐림 ? 

Markov Model 
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Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

Markov Model 
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Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

Markov Model 
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 Length of the observation sequence : T 
 

 Observable states : 
 1, 2, …, N 

 

 Observed sequence : 
 O1,O2,…,Ot,…OT 

 

Markov property 
 P(Ot+1 = i | O1,O2,…,Ot-1,Ot) = P(Ot+1 = i | Ot) 

 

Markov Model 
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Markov Model 
 P(O1,O2,…,OT) 
   = P(O1)P(O2|O1)P(O3|O1,O2)…P(OT|O1,…,OT-1) 
   = P(O1)P(O2|O1)P(O3|O2)…P(OT|OT-1) 

 

맑음 흐림 비 
0.1 0.2 

P(맑음,흐림,비) 

= P(맑음)P(흐림|맑음)P(비|흐림) 

= 1.0 x 0.1 x 0.2 = 0.02 
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Hidden Markov Models 
Why hidden? 

 You don’t know the state sequence that the model passes through, but 
only some probabilistic function of it. 

 A natural extension to the Markov chain introduces a nondeterministic 
process that generates output observation symbols in any given state. 

 
 The observation is a probabilistic function of the state 

 new model is known as a hidden Markov model 
 Can be viewed as double embedded  stochastic process with an 

underlying stochastic process not directly observable 

 
 HMM is basically a Markov chain where the output 

observation is a random variable X generated according to a 
output probabilistic function associated with each state 
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Hidden Markov Models 
 Hidden Markov Model 개념 

 이상한 음료수 자판기(Crazy soft drink machine) 

Cola 

Pref. 

Iced Tea 

Pref. 

0.5 

0.3 

0.7 0.5 

start 
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Hidden Markov Model 
 Visible Markov Model 

 If, when you put in your coin, the machine always put out a cola if it 
was in the cola preferring state and an iced tea when it was in the 
iced tea preferring state 

 But instead, it only has a tendency to do this. 
 So we need symbol emission probabilities for the observations 

 
 
 

 For this machine, the output is actually independent of sj  

ijkjtitt bsXsXkOP   ),|( 1
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Hidden Markov Model 

Cola 
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자판기가 Cola Pref.에서 작동하기 시작할 때, {Lemon, Ice_t}  
순서로 음료가 나올 확률은 ? 
 
 
 
 
 
 

Cola Pref., Cola Pref. : (0.7x0.3)x(0.7x0.1)+ 
Cola Pref., Ice_t Pref. : (0.7x0.3)x(0.3x0.1)+ 
Ice_t Pref., Ice_t Pref. : (0.3x0.3)x(0.5x0.7)+ 
Ice_t Pref., Cola Pref. : (0.3x0.3)x(0.5x0.7) = 0.084 
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Hidden Markov Model 
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Hidden Markov Model 
 Notation for an Hidden Markov Models 

 T = length of the observation sequence, 
          {O1, O2,…, Ot,…, OT}      (자판기 동작 횟수)  
 N = number of states in the model (자판기 상태 수) 
 L = number of observation symbols (자판기 음료 종류) 
 S = a set of states, {s} (자판기 상태집합) 
           st = i : state i at time t 
 A = state transition probability matrix (자판기 상태변화) 
    aIJ =  P( st+1 = J | st = I ) 
 B = Observation probability distribution (음료수 확률분포) 
          bJ (Ot) =  P( Ot  | st = J ) 

  = Initial state distribution (초기 상태 분포):  i = P( s1 = i ) 
   = hidden markov model :  = P( A, B,  ) 
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Hidden Markov Model 

 Two assumptions in the first-order hidden Markov model 
 Markov assumption for the Markov chain 

 

 
 

 Output-independence assumption 
 Probability that a particular symbol is emitted at time t depends only on the state      

 
 Independent of the past observations 
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HMM Formalism 

oT o1 ot ot-1 ot+1 

A 

B 

A A A 

B B B B 

… … 

{S, L, 
 are the initial state probabilities 
 S : {s1…sN } are the values for the hidden states 
 L : {l1…lM } are the values for the observations 
 A = {aij} are the state transition probabilities 
 B = {bik} are the observation state probabilities 
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Hidden Markov Model 

 If it is not possible to observe the sequence of states of a 
Markov model, but, only the sequence of emitted alphabets 
or signals, the model is called HMM 

 
 We can guess the best state sequence; 
 argmaxS P(S | O), where O : the sequence of observed alphabet. 
  = argmaxS {P(O | S) P(S)} / P(O)  
  = argmaxS  P(O | S) P(S) 
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Three fundamental questions for HMM 

 Given a sequence of observed signals O = {o1, …, oT}  
 and model μ =(A, B, ) 
 

 Evaluation problem: 
 compute the prob. of observing P(O|μ ) this particular signal sequence. 
  

 Decoding problem: 
 determine the most probable state sequence S = s1, …, sT that can 

give rise to this signal sequence. 
  

 Learning or estimation Problem:  
 Determine the set of model parameter μ = (A, B,) maximizing the prob. 

of this signal sequence P(O| μ ). 
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Given an observation sequence and a model, 
compute the probability of the observation sequence 

Evaluation 

… … 
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Finding the probability of an observation 

 Decoding                    
                                                               X=(X1,…,Xt+1)   
                                                                                    any state sequence 

 

 
 
 
 
 
 
 

 But, unfortunately, direct evaluation of the resulting expression is 
hopelessly inefficient. 
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Dynamic Programming 

 The general technique for the secret to avoiding this 
complexity 
 We remember partial results rather than re-computing them 

 Ex) chart parsing in computational linguistics 
 Lattice (or Trellis) 

1                2              3                                                                   T+1 

S1 

S2 

S3 

SN 

State 

Time, t 
ISLAB 34 

Forward procedure 

 forward variables 
 

 
 is stored at          in the trellis 
 expresses the total probability of ending up in state     at time t 
 is calculated by summing probabilities for all incoming arcs at a trellis 

node 
 
 Initialization 

 
 Induction 

 
 total 

)|,()( 121  iXoooPt tti  

),( tsi

is

Niii  1     ,)1( 

NjTtbatt
N

i
ijoijij t

 


1,1     ,)()1(
1







N

i
i TOP

1

)1()|(  Requires multiplications 
TN 22

ISLAB 35 

The backward procedure 

 Backward variables 
 

 
 The total probability of seeing the rest of the observation sequence 

given that we were in state      at time t. 
 Combination of forward and backward probabilities is vital for solving 

the third problem of parameter re-estimation 
 
 Initialization 

 
 Induction 
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oT o1 ot ot-1 ot+1 

x1 xt+1 xT xt xt-1 

Evaluation Solution 





N

i
i TOP

1
)()|( 





N

i
iiOP

1

)1()|( 

)()()|(
1

ttOP i

N

i
i  





Forward Procedure 

Backward Procedure 

Combination 

… … 



10 

ISLAB 37 

Combining them 
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Finding the best state sequence 

 Choosing the states individually 
 

 For each t, we would find      that maximizes 
 
 
 
 
 
 

 The individually most likely state 
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oT o1 ot ot-1 ot+1 

Decoding solution: finding best sequence 
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Viterbi algorithm 

 

 

The state sequence which maximizes the probability 
of seeing the observations to time t-1, landing in state 
j, and seeing the observation at time t 

x1 xt-1 j 
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Viterbi algorithm (Cont.) 

1. Initialization 
 

2. Induction 
 

 Store backtrace 
 

3. Termination and path readout (by backtracking) 
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Learning problem solution 
 The values of the model parameters:  

 Using Maximum Likelihood Estimation, we want to find the values that 
maximize: 
 
 

 There is no known analytic method to choose to maximize P(O|). 
 We can locally maximize it by an iterative hill-climbing algorithm 

 Baum-Welch or Forward-Backward algorithm 
 It is a special case of the Expectation Maximization (EM) method 

 Start with the probability of the observation sequence using some model 
(perhaps randomly chosen model) 

 We iteratively calculate which state transitions and symbol emissions were 
probably used the most. 

 By increasing the probability of those, we can choose a revised model which 
gives a higher probability to the observation sequence. 

 This maximization process is often referred to as training the model on 
training data 
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Baum-Welch algorithm 

 Probability of traversing a certain arc 
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Baum-Welch algorithm (Cont.) 

 State transition probability 
 Probability of traversing a certain arc at time t given observation sequence O  

 

 
 
 

 
 
 

 
 

 Note that  
 Expectations(counts), If sum over the time index 
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Learning problem solution: Baum-Welch algorithm 

 Parameter estimation 
 Given an observation sequence, find the model that is most likely to 

produce that sequence. 
 Given a model and observation sequence, update the model parameters to 

better fit the observations. 
 

 Re-estimation : from                  , derive 
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HMM Conclusion 

 This is a general property of the EM algorithm 
 Iterating through a number of rounds of parameter reestimation 

will improve our model 
 One continues reestimating the parameters until results are no 

longer improving significantly. But this process of parameter 
reestimation does not guarantee that we will find the best model. 
 

 HMM Applications 
 POS Tagging  
 Speech recognition 
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 The state transition and observation probabilities of the crazy 
soft drink machine 
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HMM Calculation Exercise 

ISLAB 

 Variable Calculations for O=(lem, ice_t, cola) 
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HMM Calculation Exercise 

ISLAB 

 Variable Calculations for O=(lem, ice_t, cola) 
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HMM Calculation Exercise 
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 Reestimation from Baum-Welch algorithm 

49 

HMM Calculation Exercise 
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Discriminative Model: MEM Background 
Maximum Entropy Model (MEM) 

 
 More widely known as multinomial logistic regression 
 Belong to the family of classifiers known as the exponential or log-

linear classifiers 
 Extract some set of features from the input and combine them linearly 
 Linear regression and logistic regression 
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Discriminative Model: MEM Background 
 Linear Regression 

 Regression vs. Classification 
 Output of regression: real-valued 
 Output of classification: one of a discrete set of classes 

 
 An example for regression 

 Real estate ads: lower prices (fantastic, cute, or charming), higher prices (maple or 
granite) 
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Discriminative Model: MEM Background 
 Linear Regression 

 
 
 
 
 
 
 
 
 
 

 Prediction score: 
 

 

 



14 

ISLAB 53 

Discriminative Model: MEM Background 
 Linear Regression 

 General form: 
 
 
 
 

 Learning in linear regression 
 Each observation x would have a feature vector f, and we would train the weight 

vector w to minimize the prediction error from 1 or 0 
 Sum-squared error 
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Discriminative Model: MEM Background 
 Logistic Regression 

 Need to change the real-valued outcome of linear regression into 
classification (one from a small set of discrete values) 
 Probabilistic classification for binary classification 

 
 
 

 Problem: The left hand lies between 0 and 1 but the right hand lies between - 
and . 

 Solution: Using odds (ratio of two probabilities) and logit function (log of the odds)  
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Discriminative Model: MEM Background 
 Logistic Regression 

 To estimate the logit of the probability rather than the probability              
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Discriminative Model: MEM Background 
 Logistic Regression 

 Logistic function                                           *        
 
 
 
 

 This function maps values from  to lie between 0 and 1. 

 Classification of logistic regression 
 
 
 
 
 

 This is the equation of a hyper-plane (a generalization of a line to N dimension)  
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Maximum Entropy Modeling 
Multinomial logistic regression 

 From binary value (0 or 1) to many discrete values 
 Called MaxEnt in speech and language processing 
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Maximum Entropy Modeling 
 Indicator function 

 A feature that takes on only the value 0 and 1 
 Ex) POS tagging 
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Maximum Entropy Modeling 
 Indicator function 

 Ex) POS tagging (Continue) 
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Maximum Entropy Modeling 
 Classification in MaxEnt 

 A generalization of classification in (Boolean) logistic regression 
 MaxEnt naturally gives us a probability distribution over the classes  

 

 
 

 Any kind of complex feature has to be defined by hand 
 Ex) 
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Maximum Entropy Modeling 
 Learning in MaxEnt 

 To find the parameters w that maximize the log likelihood of the M 
training samples 
 
 

 Important aspect is a kind of smoothing of the weights called 
regularization 
 To penalize large weights: a MaxEnt model will learn very high weights that overfit 

the training data 
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Maximum Entropy Modeling 
Why We Call It Maximum Entropy 

 We want to assign a tag to the word “zzfish”  
 No constraint would be the equiprobable distribution. 

 
 

 Learn only one fact: the set of possible tags is NN, JJ, NNS and VB 
 
 
 

 Learn one more fact: two constraints 
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Maximum Entropy Modeling 
Why We Call It Maximum Entropy? 

 We want to assign a tag to the word “zzfish”  
 Learn one more fact : three constraints 

 
 
 
 

 The optimization problem of finding this distribution as follows: (Berger et al. 1996) 

 
 

 


