

Contents

* Introduction of Generative vs. Discriminative Models
> Taxonomy of Two Models
> Graphical Model Relationship
* Generative Models:
> Naïve Bayes
> Hidden Markov Model (HMM)
* Discriminative Model:
> Maximum Entropy Model (MEM)

Introduction

* Pattern classification (Duda \& Hart)

Fig1. The process of the pattern classification system Fig2. The design cycle of the pattern classification system
(管) DONG-A UNIVERSITY 4

Introduction

* Generative vs. Discriminative Models

Discriminative

DONG-A UNIVERSITY

Taxonomy of two Models

* Generative Models

$>$ To model class-conditional pdfs and prior probabilities
> "Generative" since sampling can generate synthetic data points
$>$ Popular models:

- Gaussians, Naïve Bayes, Mixtures of multinomials
- Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
- Sigmoidal belief networks, Bayesian networks, Markov random fields

* Discriminative Models

> Directly estimate posterior probabilities

- No attempt to model underlying probability distributions
$>$ Focus computational resources on given task-better performance
> Popular models:
Logistic regression (MEM), SVMs
- Traditional neural networks, Nearest neighbor
- Conditional Random Fields (CRF)
(\%) DONG-A UNIVERSITY

Introduction

* A Simple Example of Generative vs. Discriminative Models $>A$ form $(x, y):(1,0),(1,0),(2,0),(2,1)$
$>p(x, y)$: to be transformed into $p(y \mid x)$ by applying Bayes rule and to generate likely (x, y) pairs

	$y=0$	$y=1$
$x=1$	$1 / 2$	0
$x=2$	$1 / 4$	$1 / 4$

$>p(y \mid x)$: natural distribution for classifying a given example x into a class y
(3) DONG-A UNIVERSITY

6

Generative Model: Naïve Bayes

* To learn a bayes classifier, we need to model $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$ and $P(y)$
$>$ We can assume that x_{i} 's are conditionally independent given y,

$$
P\left(x_{1}, x_{2}, \ldots, x_{n} \mid y\right)=\prod_{i=1}^{n} P\left(x_{i} \mid y\right)
$$

- This is called the Naïve Bayes assumption

DONG-A UNIVERSITY
9

Markov Chain (Sequence Classification)

* Markov chain

$>$ Often we want to consider a sequence of random variables that aren't independent, but rather the value of each variable depends on previous elements in the sequence

* Markov Assumption
$>$ A sequence of states: $X_{1}, X_{2}, X_{3}, \ldots$
$>$ The transition from X_{t-1} to X_{t} depends only on X_{t-1} (Markov Property).
- The transition probabilities are the same for any t (stationary process)

(7) DONG-A UNIVERSITY
${ }^{11}$

Generative Model: Naïve Bayes

* Learning

$>$ Need to estimate the following probability distributions (via counting)

```
p(y)
p(\mp@subsup{x}{i}{}|y)\quad\mathrm{ Class conditional distribution of }\mp@subsup{x}{\textrm{i}}{}
```

* Predicting
$>$ Given $\mathrm{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{d}}\right)$, compute $\mathrm{p}(\mathbf{y} \mid \mathbf{x})$

$$
p(y \mid \mathbf{x})=\frac{p(y) p(\mathbf{x} \mid y)}{p(\mathbf{x})} \propto p(y) \prod_{i} p\left(x_{i} \mid y\right)
$$

- Apply aecision ineory to maкe innaı preaicuon or y
(\%) DONG-A UNIVERSITY
10

Markov Model

* Examples

N-gram models in NLP
V Valid phone sequences in speech recognition
$>$ Sequences of speech acts in dialog systems

$$
=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right)
$$

* Bigram model

> Bigram models are rather inaccurate language models.

$$
=\pi_{\mathrm{X}_{1}} \prod_{\mathrm{t}=1}^{\mathrm{T}-1} a_{X_{t} X_{t+1}}
$$

Ex) the word after "a" is much more likely to be "missile" if the word preceding "a" is "launch

- The Markov assumption is pretty bad.
> If we could condition on a few previous words, life gets a bit better
$>$ E.g., we could predict "missile" is more likely to follow "launch a" than "saw a".
> This would require a "second order" Markov model.

2) DONG-A UNIVERSITY

13

$$
P\left(X_{1}, \ldots, X_{T}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{T} \mid X_{1}, \ldots, X_{T-1}\right)
$$

Markov Model

* Markov Model 개념
> 내일의 날씨는 어떻게 될까요?

(7) DONG-A UNIVERSITY

16

Markov Model

* Length of the observation sequence : T
- $\mathrm{P}\left(\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{T}}\right)$
$=\mathrm{P}\left(\mathrm{O}_{1}\right) \mathrm{P}\left(\mathrm{O}_{2} \mid \mathrm{O}_{1}\right) \mathrm{P}\left(\mathrm{O}_{3} \mid \mathrm{O}_{1}, \mathrm{O}_{2}\right) \ldots \mathrm{P}\left(\mathrm{O}_{T} \mid \mathrm{O}_{1}, \ldots, \mathrm{O}_{\mathrm{T}-1}\right)$
$=\mathrm{P}\left(\mathrm{O}_{1}\right) \mathrm{P}\left(\mathrm{O}_{2} \mid \mathrm{O}_{1}\right) \mathrm{P}\left(\mathrm{O}_{3} \mid \mathrm{O}_{2}\right) \ldots \mathrm{P}\left(\mathrm{O}_{\mathrm{T}} \mid \mathrm{O}_{\mathrm{T}-1}\right)$
* Observable states :
$>1,2, \ldots, N$
* Observed sequence :
$>\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{t}}, \ldots \mathrm{O}_{\mathrm{T}}$
* Markov property
$>\mathrm{P}\left(\mathrm{O}_{\mathrm{t}+1}=\mathrm{i} \mid \mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{t}-1}, \mathrm{O}_{\mathrm{t}}\right)=\mathrm{P}\left(\mathrm{O}_{\mathrm{t}+1}=\mathrm{i} \mid \mathrm{O}_{\mathrm{t}}\right)$
(7) DONG-A UNIVERSITY

19

Markov Model

P (맑음, 흐림, 비)

$=1.0 \times 0.1 \times 0.2=0.02$
(2) DONG-A UNIVERSITY

20

Hidden Markov Models

Why hidden?
> You don't know the state sequence that the model passes through, but only some probabilistic function of it.
> A natural extension to the Markov chain introduces a nondeterministic process that generates output observation symbols in any given state

* The observation is a probabilistic function of the state $>$ new model is known as a hidden Markov model
$>$ Can be viewed as double embedded stochastic process with an underlying stochastic process not directly observable
* HMM is basically a Markov chain where the output observation is a random variable X generated according to a output probabilistic function associated with each state (3) DONG-A UNIVERSITY
${ }^{21}$

Hidden Markov Model

* Visible Markov Model

$>$ If, when you put in your coin, the machine always put out a cola if it was in the cola preferring state and an iced tea when it was in the iced tea preferring state
$>$ But instead, it only has a tendency to do this
$>$ So we need symbol emission probabilities for the observations

$$
P\left(O_{t}=k \mid X_{t}=s_{i}, X_{t+1}=s_{j}\right)=b_{i j k}
$$

$>$ For this machine, the output is actually independent of s_{j}

* Hidden Markov Model 개념
$>$ 이상한 음료수 자판기(Crazy soft drink machine)

DONG-A UNIVERSITY
22

Hidden Markov Model

* 자판기가 Cola Pref. 에서 작동하기 시작할 때, \{Lemon, Ice_t\} 순서로 음료가 나올 확률은?

Cola Pref., Cola Pref. : $(0.7 \times 0.3) \times(0.7 \times 0.1)+$
Cola Pref., Ice_t Pref. : $(0.7 \times 0.3) \times(0.3 \times 0.1)+$
Ice_t Pref., Ice_t Pref. : $(0.3 \times 0.3) \times(0.5 \times 0.7)+$ Ice_t Pref., Cola Pref. : $(0.3 \times 0.3) \times(0.5 \times 0.7)=0.084$

DONG-A UNIVERSITY
25

Hidden Markov Model

* Two assumptions in the first-order hidden Markov model > Markov assumption for the Markov chain

$$
\begin{aligned}
& {\left[\begin{array}{l}
P\left(s_{t} \mid s_{1}^{t-1}\right)=P\left(s_{t} \mid s_{t-1}\right) \mid \\
-
\end{array},\right.}
\end{aligned}
$$

> Output-independence assumption

- Probability that a particular symbol is emitted at time t depends only on the state s_{t}
- Independent of the past observations

$$
\begin{aligned}
& P_{i}\left(\bar{X}_{t} \mid \bar{X}_{1}^{t-1}, s_{1}^{t}\right)=P\left(\bar{X}_{t} \mid \bar{s}_{t}\right) \\
& L_{1}
\end{aligned}
$$

Hidden Markov Model

* Notation for an Hidden Markov Models
$>T=$ length of the observation sequence,

$$
\left\{O_{1}, O_{2}, \ldots, O_{t}, \ldots, O_{T}\right\} \quad(\text { 자판기 동작 횟수) }
$$

$>N=$ number of states in the model (자판기 상태 수)
$>L=$ number of observation symbols (자판기 음료 종류)
> $S=$ a set of states, $\{\mathrm{s}\}$ (자판기 상태집합)

$$
s_{t}=i: \text { state } i \text { at time } t
$$

> $A=$ state transition probability matrix (자파기기ㅇㅏㅐ변화) $a_{I J}=P\left(s_{t+1}=J \mid s_{t}=l\right)$
$>B=$ Observation probability distribution (음료수 확률분포)

$$
b_{J}\left(O_{t}\right)=P\left(O_{t} \mid s_{t}=J\right)
$$

$>\pi=$ Initial state distribution (초기 상태 분포): $\pi_{i}=P\left(\mathrm{~s}_{1}=i\right)$
$>\lambda=$ hidden markov model : $\lambda=P(A, B, \pi)$
(\%) DONG-A UNIVERSITY
26
$\{S, L, \Pi, A, B\}$

* $\Pi=\left\{\pi_{\nu}\right\}$ are the initial state probabilities
$\% \mathrm{~S}:\left\{\mathrm{s}_{1} \ldots \mathrm{~s}_{N}\right\}$ are the values for the hidden states
$\& L:\left\{I_{1} \ldots I_{M}\right\}$ are the values for the observations
* $A=\left\{a_{i j}\right\}$ are the state transition probabilities
$\% B=\left\{b_{i k}\right\}$ are the observation state probabilities

[^0]
Hidden Markov Model

* If it is not possible to observe the sequence of states of a Markov model, but, only the sequence of emitted alphabets or signals, the model is called HMM
$>$ We can guess the best state sequence
$\operatorname{argmax}_{S} P(S \mid O)$, where O : the sequence of observed alphabet. $=\operatorname{argmax}_{S}\{P(O \mid S) P(S)\} / P(O)$
$=\operatorname{argmax}_{S} P(O \mid S) P(S)$

Evaluation

Given an observation sequence and a model, compute the probability of the observation sequence

$$
\begin{aligned}
& O=\left(o_{1} \ldots O_{T}\right), \mu=(A, B, \Pi) \\
& \text { Compute } P(O \mid \mu)
\end{aligned}
$$

Three fundamental questions for HMM

* Given a sequence of observed signals $O=\left\{o_{1}, \ldots, o_{T}\right\}$ and model $\mu=(A, B, \pi)$
> Evaluation problem:
- compute the prob. of observing $\mathrm{P}(\mathrm{O} \mid \mu)$ this particular signal sequence
> Decoding problem:
- determine the most probable state sequence $\mathrm{S}=\mathrm{s}_{1}, \ldots$, s_{T} that can give rise to this signal sequence.
> Learning or estimation Problem:
- Determine the set of model parameter $\mu=(\mathrm{A}, \mathrm{B}, \pi)$ maximizing the prob. of this signal sequence $\mathrm{P}(\mathrm{O} \mid \mu)$.

Finding the probability of an observation

* Decoding

$$
\begin{aligned}
& P(O \mid \mu)=\sum_{x} P(O, X \mid \mu) \quad \mathrm{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{t}+1}\right) \\
& =\sum_{X} P(O \mid X, \mu) P(X \mid \mu) \\
& P(O \mid X, \mu)=\prod_{t=1}^{T} P\left(o_{t} \mid X_{t}, X_{t+1}, \mu\right)=b_{X_{1} X_{20},} b_{X_{2} X_{3} o_{2}} \cdots b_{X_{T} X_{T+1} o_{T}}=\prod_{t=1}^{T} b_{X_{t} X_{t+1} o_{t}} \\
& P(X \mid \mu)=\pi_{X_{1}} a_{X_{1} X_{2}} a_{X_{2} X_{3}} \cdots a_{X_{T} X_{T+1}}=\pi_{X_{1}} \prod_{t=1}^{T} a_{X_{1} X_{t+1}} \\
& =\sum_{X_{1} \cdots X_{T+1}} \pi_{X_{1}} \prod_{t=1}^{T} a_{X_{t} X_{t+1}} b_{X_{t} X_{t+1} o_{t}} \quad \begin{array}{r}
\text { Requires multiplications } \\
(2 T+1) \cdot N^{T+1}
\end{array} \\
& (2 T+1) \cdot N^{T+1}
\end{aligned}
$$

$>$ But, unfortunately, direct evaluation of the resulting expression is hopelessly inefficient.
(\%) DONG-A UNIVERSITY 32

Dynamic Programming

* The general technique for the secret to avoiding this complexity
> We remember partial results rather than re-computing them
- Ex) chart parsing in computational linguistics
- Lattice (or Trellis)

Forward procedure

* forward variables

$$
\alpha_{i}(t)=P\left(o_{1} O_{2} \cdots o_{t-1}, X_{t}=i \mid \mu\right)
$$

$>$ is stored at $\left(s_{i}, t\right)$ in the trellis
$>$ expresses the total probability of ending up in state S_{i} at time t
is calculated by summing probabilities for all incoming arcs at a trellis node

- Initialization	$\alpha_{i}(1)=\pi_{i}, \quad 1 \leq i \leq N$
- Induction	$\alpha_{j}(t+1)=\sum_{i=1}^{N} \alpha_{i}(t) a_{i j} b_{i j o_{i}}$,
- total $1 \leq t \leq T, 1 \leq j \leq N$	
DONG-A UNIVERSITY	$P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T+1)$
Requires multiplications $2 N^{2} T$	

(\%) DONG-A UNIVERSITY
34

The backward procedure

* Backward variables

$$
\beta_{i}(t)=P\left(o_{t} \cdots o_{T} \mid X_{t}=i, \mu\right)
$$

$>$ The total probability of seeing the rest of the observation sequence given that we were in states ${ }_{i}$ at time t.
$>$ Combination of forward and backward probabilities is vital for solving the third problem of parameter re-estimation

$$
\begin{array}{ll}
\text { - Initialization } & \beta_{i}(T+1)=1, \quad 1 \leq i \leq N \\
\text { - Induction } & \beta_{i}(t)=\sum_{j=1}^{N} a_{i j} b_{i j o_{t}} \beta_{j}(t+1), \quad 1 \leq t \leq T, 1 \leq i \leq N \\
\text { - total } & P(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} \beta_{i}(1)
\end{array}
$$

(\%) DONG-A UNIVERSITY
35

Evaluation Solution

$P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(T)$
Forward Procedure $P(O \mid \mu)=\sum_{i=1}^{N} \pi_{i} \beta_{i}(1) \quad$ Backward Procedure $P(O \mid \mu)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t) \quad$ Combination
(ㅍ⼸) DONG-A UNIVERSITY 36

Combining them

$$
\begin{aligned}
P\left(O, X_{t}=i \mid u\right)= & P\left(o_{1} \ldots o_{T}, X_{t}=i \mid u\right) \\
= & P\left(o_{1} \ldots o_{t-1}, X_{t}=i, o_{t} \ldots o_{T} \mid u\right) \\
= & P\left(o_{1} \ldots o_{t-1}, X_{t}=i \mid u\right) \\
& \quad \times P\left(o_{t} \ldots o_{T} \mid o_{1} \ldots o_{t-1}, X_{t}=i, u\right) \\
= & \alpha_{i}(t) \beta_{i}(t)
\end{aligned}
$$

Therefore:
$P(O \mid u)=\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t), 1 \leq t \leq T+1$

Finding the best state sequence

* Choosing the states individually
\Rightarrow For each t, we would find X_{t} that maximizes $P\left(X_{t} \mid O, \mu\right)$

$$
\begin{aligned}
\gamma_{i}(t) & =P\left(X_{t}=i \mid O, \mu\right) \\
& =\frac{P\left(X_{t}=i, O \mid \mu\right)}{P(O \mid \mu)} \\
& =\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{j=1}^{N} \alpha_{j}(t) \beta_{j}(t)}
\end{aligned}
$$

$>$ The individually most likely state

$$
\hat{X}_{t}=\underset{1 \leq i \leq N}{\arg \max } \gamma_{i}(t), \quad 1 \leq t \leq T+1
$$

Viterbi algorithm (Cont.)

1. Initialization

$$
\delta_{j}(1)=\pi_{j}, \quad 1 \leq j \leq N
$$

2. Induction

$$
\delta_{j}(t+1)=\max _{1 \leq i \leq N} \delta_{i}(t) a_{i j} b_{i j o_{t}}, \quad 1 \leq j \leq N
$$

Store backtrace

$$
\psi_{j}(t+1)=\underset{1 \leq i \leq N}{\arg \max } \delta_{i}(t) a_{i j} b_{i j o_{t}}, \quad 1 \leq j \leq N
$$

3. Termination and path readout (by backtracking)

$$
\begin{aligned}
& \hat{X}_{T+1}=\underset{1 \leq i \leq N}{\arg \max } \delta_{i}(T+1) \\
& \hat{X}_{t}=\psi_{\hat{X}_{t+1}}(t+1) \\
& P\left(\hat{X}_{t}\right)=\max _{1 \leq i \leq N} \delta_{i}(T+1)
\end{aligned}
$$

(\%) DONG-A UNIVERSITY
40

Learning problem solution

* The values of the model parameters: $\quad \mu=(A, B, \pi)$

$>$ Using Maximum Likelihood Estimation, we want to find the values that maximize:

$$
\underset{\mu}{\arg \max } P\left(O_{\text {training }} \mid \mu\right)
$$

> There is no known analytic method to choose to maximize $\mathrm{P}(\mathrm{O} \mid \mu)$.
$>$ We can locally maximize it by an iterative hill-climbing algorithm

- Baum-Welch or Forward-Backward algorithm
- It is a special case of the Expectation Maximization (EM) method
\checkmark Start with the probability of the observation sequence using some model (perhaps randomly chosen model)
\checkmark We iteratively calculate which state transitions and symbol emissions were probably used the most.
By increasing the probability of those, we can choose a revised model which gives a higher probability to the observation sequence.
\checkmark This maximization process is often referred to as training the model on
training data
DONG-A UNIVERSITY
41

Baum-Welch algorithm (Cont.)

- State transition probability

> Probability of traversing a certain arc at time t given observation sequence O

$$
p_{t}(i, j)=P\left(X_{t}=i, X_{t+1}=j \mid O, \mu\right)=\frac{P\left(X_{t}=i, X_{t+1}=j, O \mid \mu\right)}{P(O \mid \mu)}
$$

$$
=\frac{\alpha_{i}(t) a_{i j} b_{i j j_{t}} \beta_{j}(t+1)}{\sum_{m=1}^{N} \alpha_{m}(t) \beta_{m}(t)}=\frac{\alpha_{i}(t) a_{i j} b_{i j_{t}} \beta_{j}(t+1)}{\sum_{m=1}^{N} \sum_{n=1}^{N} \alpha_{m}(t) a_{m n} b_{m 0_{t}} \beta_{n}(t+1)}
$$

$$
\begin{aligned}
& \sum_{t=1}^{T} \gamma_{i}(t) \quad=\text { expected number of transitions from state } i \text { in } O \\
& \sum_{t=1}^{T} p_{t}(i, j)=\text { expected number of transitions from state } i \text { to } j \text { in } O
\end{aligned}
$$

- Note that $\quad \gamma_{i}(t)=\sum_{i}^{N} p_{t}(i, j)$
- Expectations(counts), If sum over the time index

Baum-Welch algorithm

* Probability of traversing a certain arc

Figure 9.7 The probability of traversing an arc. Given an observation sequence and a model, we can work out the probability that the Markov proess went from state s_{i} to s_{j} at time t.
(7) DONG-A UNIVERSITY

HMM Conclusion

$$
\begin{aligned}
& \text { from } \mu=(A, B, \pi) \text {, we derive } \hat{\mu}=(\hat{A}, \hat{B}, \hat{\pi}) \\
& \text { As proved by Baum, we have that : } \\
& P(O \mid \hat{\mu}) \geq P(O \mid \mu)
\end{aligned}
$$

This is a general property of the EM algorithm
$>$ Iterating through a number of rounds of parameter reestimation will improve our model

- One continues reestimating the parameters until results are no longer improving significantly. But this process of parameter reestimation does not guarantee that we will find the best model

* HMM Applications

> POS Tagging

- Speech recognition

DONG-A UNIVERSITY
45 ISAB

HMM Calculation Exercise

* The state transition and observation probabilities of the crazy soft drink machine

П СР 1.0
$\begin{array}{ll}\text { IP } & 0.0\end{array}$
$A \quad$ CP IP
$\begin{array}{llll}A & \text { CP } & 0.7 & 0.3\end{array}$
$\begin{array}{lll}\text { IP } & 0.5 & 0.5\end{array}$

	cola	iced tea (ice_t)	lemonade (lem)
CP	0.6	0.1	0.3
IP	0.1	0.7	0.2

(햐) DONG-A UNIVERSITY
46
ISAB

HMM Calculation Exercise

Time (t):	lem			4
	1	2	3	
$\alpha_{C P}(t)$	1.0	0.21	0.0462	0.021294
$\alpha_{I P}(t)$	0.0	0.09	0.0378	0.010206
$\underline{P\left(o_{1} \cdots o_{t-1}\right)}$	1.0	0.3	0.084	0.0315
$\beta_{C P}(t)$	0.0315	0.045	0.6	1.0
$\beta_{I P}(t)$	0.029	0.245	0.1	1.0
$P\left(o_{1} \cdots o_{T}\right)$	0.0315			
$\gamma_{C P}(t)$	1.0	0.3	0.88	0.676
$\gamma_{I P}(t)$	0.0	0.7	0.12	0.324

HMM Calculation Exercise

* Variable Calculations for $\mathrm{O}=(l e m$, ice_t, cola)

$\widehat{X_{t}}$	CP	IP	CP	CP
$\delta_{C P}(t)$	1.0	0.21	0.0315	0.01323
$\delta_{I P}(t)$	0.0	0.09	0.0315	0.00567
$\psi_{C P}(t)$		CP	IP	CP
$\psi_{I P}(t)$		CP	IP	CP
\hat{X}_{t}	CP	IP	CP	CP
$P(\hat{X})$	0.019404			

(2) DONG-A UNIVERSITY

HMM Calculation Exercise

*Reestimation from Baum-Welch algorithm

Discriminative Model: MEM Background

* Maximum Entropy Model (MEM)
$>$ More widely known as multinomial logistic regression
> Belong to the family of classifiers known as the exponential or loglinear classifiers
- Extract some set of features from the input and combine them linearly
- Linear regression and logistic regression

Discriminative Model: MEM Background

```
* Linear Regression
> Regression vs. Classification
Output of regression: real-valued
- Output of classification: one of a discrete set of classes
\(>\) An example for regression
Real estate ads: lower prices (fantastic, cute, or charming), higher prices (maple or granite)
```


Discriminative Model: MEM Background

* Linear Regression

$$
\begin{aligned}
& \text { Figure 6.18 A plot of the (made-up) points in Fig. } 6.17 \text { and the regression line that best } \\
& \text { fits them, with the equation } y=-490 x+16550 \text {. }
\end{aligned}
$$

> Prediction score

$$
\text { price }=w_{0}+\sum_{i=1}^{N} w_{i} \times f_{i}
$$

(2) DONG-A UNIVERSITY

Discriminative Model: MEM Background

* Linear Regression
> General form

$$
\begin{aligned}
\text { dot product: } \quad a \cdot b & =\sum_{k=1}^{N} a_{l} b_{l}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \\
y & =w \cdot f
\end{aligned}
$$

> Learning in linear regression
Each observation x would have a feature vector f, and we would train the weight vector w to minimize the prediction error from 1 or 0

- Sum-squared error

$$
\operatorname{cost}(W)=\sum_{j=0}^{M}\left(y_{\text {pred }}^{(j)}-y_{\text {obs }}^{(j)}\right)^{2}
$$

Discriminative Model: MEM Background

* Logistic Regression

$>$ To estimate the logit of the probability rather than the probability

$$
\begin{aligned}
& \ln \left(\frac{p(y=\text { true } \mid x)}{1-p(y=\text { true } \mid x)}\right)=w \cdot f \\
& \frac{p(y=\operatorname{true} \mid x)}{1-p(y=\operatorname{true}(x)}=e^{m \times f} \\
& \begin{array}{l}
1-p(y=\text { true } x) \\
p(y=\text { true } x)=\left(1-p(y=\text { true } x) e^{\text {mix }}\right.
\end{array} \\
& \begin{array}{l}
p(y=\text { true } x)=\left(1-p(y=\text { true } \mid x) e^{n-f}\right. \\
p(y=\text { true } x)=e^{m \prime \prime}-p\left(y=\text { true } \mid x e^{m i}\right.
\end{array} \\
& \begin{array}{l}
p(y=\text { true } x)=e^{m i \prime}-p\left(y=\text { true } \mid x e^{m}\right. \\
p(y=\text { true }
\end{array} \\
& \begin{array}{l}
p(y=\text { true } \mid x)+p(y=\text { true } x) \\
p(y=\text { true } x)\left(1+e^{m i=f}\right)=e^{m=\prime}
\end{array} \\
& p(y=\text { true } \mid x)=\frac{e^{m \cdot f}}{1+e^{m / t}} \\
& p(y=\text { false } \mid x)=\frac{1}{1+e^{m / t}} \\
& p(y=\text { true } \mid x)=\frac{\exp \left(\sum_{i=0}^{N} w_{i} f_{i}\right)}{1+\exp \left(\sum_{i=0}^{N} w_{i} f_{i}\right)} \\
& p(y=\text { false } \mid x)=\frac{1}{1+\exp \left(\sum_{i=0}^{N} w_{i} f_{i}\right)}
\end{aligned}
$$

Discriminative Model: MEM Background

* Logistic Regression
$>$ Need to change the real-valued outcome of linear regression into
classification (one from a small set of discrete values)
- Probabilistic classification for binary classification

$$
\begin{aligned}
P(y=t r u e \mid x) & =\sum_{i=0}^{N} w_{i} \times f_{i} \\
& =w \cdot f
\end{aligned}
$$

Problem:
and ∞.

- Solution: Using odds (ratio of two probabilities) and logit function (log of the odds)

$$
\begin{aligned}
& \frac{p(y=t r u e) \mid x}{1-p(y=t r u e \mid x)}=w \cdot f \\
& \ln \left(\frac{p(y=t r u e \mid x)}{1-p(y=t r u e x)}\right)=w \cdot f
\end{aligned}
$$

Discriminative Model: MEM Background

* Logistic Regression
> Logistic function

$$
\begin{aligned}
& p(y=\text { true } \mid x)=\frac{e^{m \cdot f}}{1+e^{m / f}} \\
& =\frac{1}{1+e^{-w f}} \\
& p(y=\text { false } \mid x)=\frac{e^{-m /}}{1+e^{-m /}}
\end{aligned}
$$

- This function maps values from to lie between 0 and 1
$>$ Classification of logistic regression

$p(y=$ true $\mid x)>p(y=$ false $\mid x)$	
$\frac{p(y=\text { true } \mid x)}{p(y=\text { false } \mid x)}>1$	$e^{m \cdot f}>1$
$\frac{p(y=\text { true } \mid x)}{1-p(y=\text { true } \mid x)}>1$	$w \cdot f>0$

56

Maximum Entropy Modeling

* Multinomial logistic regression
> From binary value (0 or 1) to many discrete values
$>$ Called MaxEnt in speech and language processing

$$
\begin{gathered}
p(c \mid x)=\frac{1}{Z} \exp \sum_{i} w_{i} f_{i} \quad Z=\sum_{C} p(c \mid x)=\sum_{c \in C} \exp \left(\sum_{i=0}^{N} w_{c i} f_{i}\right) \\
p(c \mid x)=\frac{\exp \left(\sum_{i=0}^{N} w_{d} f_{i}\right)}{\sum_{c^{\prime} \in C} \exp \left(\sum_{i=0}^{N} w_{c i} f_{i}\right)}
\end{gathered}
$$

DONG-A UNIVERSITY
57

Maximum Entropy Modeling

* Indicator function
$>$ Ex) POS tagging (Continue)
Secretaria/NNP is/BEZ expected/VBN to/TO race/?्- tomorrow/

$$
\begin{aligned}
& P(N N \mid x)=\frac{e^{8} e^{-1.3}}{e^{8} e^{-1.3}+e^{8} e^{01} e^{1}}=.20 \\
& P(V B \mid x)=\frac{e^{8}}{e^{8} e^{-1.3} e^{01} e^{1} e^{8} e^{01} e^{1}}=.80
\end{aligned}
$$

DONG-A UNIVERSITY
59

Maximum Entropy Modeling

* Indicator function
$>$ A feature that takes on only the value 0 and 1
$>$ Ex) POS tagging
Secretariat/NNP is/BEZ expected/VBN to/TO race/?? tomorrow/

$$
\begin{aligned}
& f_{2}(c, x)=\left\{\begin{array}{l}
1 \text { if } t_{t-1}=\text { TO } \& c=\mathrm{VB} \\
0 \text { otherwise }
\end{array} \quad f_{6}(c, x)=\left\{\begin{array}{l}
1 \text { if } t_{t-1}=\text { To } \& c=\mathrm{NN} \\
0 \text { otherwise }
\end{array}\right.\right. \\
& f_{3}(c, x)=\left\{\begin{array}{l}
1 \text { if suffix }\left(\text { word }_{i}\right)=\text { "ing" \& } c=\text { VBG } \\
0 \text { otherwise }
\end{array}\right. \\
& f_{4}(c, x)=\left\{\begin{array}{l}
1 \text { if is } \text { I_lowercase }\left(\text { wor } d_{i}\right) \& c=\mathrm{VB} \\
0 \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

(7) DONG-A UNIVERSITY

58

Maximum Entropy Modeling

* Classification in MaxEnt
> A generalization of classification in (Boolean) logistic regression
$>$ MaxEnt naturally gives us a probability distribution over the classes

$$
\hat{c}=\underset{c=C}{\operatorname{argmax}} P(c \mid x)
$$

$>$ Any kind of complex feature has to be defined by hand - Ex)

$$
f_{125}(c, x)= \begin{cases}1 & \text { if } \text { word }_{d-1}=<s>\& ~ \text { isupperfirst }\left(\text { word }_{j}\right) \& c=\mathrm{NNP} \\ 0 & \text { otherwise }\end{cases}
$$

(\%) DONG-A UNIVERSITY
60

Maximum Entropy Modeling

* Learning in MaxEnt

$>$ To find the parameters w that maximize the log likelihood of the M training samples

$$
\hat{\boldsymbol{w}}=\underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{t}^{\log P\left(y^{(i)} \mid x^{(i)}\right)}
$$

> Important aspect is a kind of smoothing of the weights called regularization

- To penalize large weights: a MaxEnt model will learn very high weights that overfit the training data

$$
\hat{w}=\underset{w}{\operatorname{argmax}} \sum_{i} \log P\left(y^{(\eta)} \mid x^{(\eta)}\right)-\alpha R(w)
$$

$$
R(W)=\sum_{j=1}^{N} w_{j}^{2}
$$

$$
\hat{w}=\underset{w}{\operatorname{argmax}} \sum_{i} \log P\left(y^{(n)} \mid x^{(n)}\right)-\alpha \sum_{j=1}^{N} w_{j}^{2}
$$

DONG-A UNIVERSITY
61

Maximum Entropy Modeling

* Why We Call It Maximum Entropy?
$>$ We want to assign a tag to the word "zzfish"
- Learn one more fact : three constraints

$$
\begin{array}{ll}
P(N N)+P(J I)+P(N N S)+P(V B)=1 \\
P\left(\text { word } \text { is zffstand } t_{t}=\mathrm{NN} \text { or } t=\mathrm{NNS}\right)=\frac{8}{10} & \begin{array}{ll}
\mathrm{NN} \mid \mathrm{JJ} & \mathrm{NNS} \\
\hline
\end{array} \\
P(V B B)=\frac{1}{20} &
\end{array}
$$

- The optimization problem of finding this distribution as follows: (Berger et al. 1996)
${ }^{-}$To select a model from a set cof allowed probability distributions, choose
the model $p^{*} \in C$ with maximum entropy $H(p)$
$p^{*}=\underset{p \in c}{\operatorname{argmax}} H(p)$

$$
H(x)=-\sum_{x} P(x) \log _{2} P(x)
$$

(\%) DONG-A UNIVERSITY
63

Maximum Entropy Modeling

* Why We Call It Maximum Entropy
$>$ We want to assign a tag to the word "zzfish"
- No constraint would be the equiprobable distribution.

- Learn only one fact: the set of possible tags is $\mathrm{NN}, \mathrm{JJ}, \mathrm{NNS}$ and VB NNTJINNS VB NNNP INMDJUHIS

- Learn one more fact: two constraints
$P(N N)+P(J D)+P(N N S)+P(V B)=1$
P (word is zfishand $t_{t}=\mathrm{NN}$ or $\left.t_{i}=\mathrm{NNS}\right)=\frac{8}{10}$

10	$\frac{1}{10}$	$\frac{4}{10}$	$\frac{1}{10}$	0	

(2) DONG-A UNIVERSITY

62

[^0]: (䇼) DONG-A UNIVERSITY

