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Fig1. The process of the pattern classification system  
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Fig2. The design cycle of the pattern classification system  
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 Generative vs. Discriminative Models 
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Introduction 

 A Simple Example of Generative vs. Discriminative Models 
 A form (x,y) : (1,0), (1,0), (2,0), (2,1)  

 
 p(x,y): to be transformed into p(y|x) by applying Bayes rule and to 

generate likely (x,y) pairs  
 
 
 
 

 p(y|x): natural distribution for classifying a given example x into a 
class y 
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y=0 y=1 
x=1 1/2 0 
x=2 1/4 1/4 
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Taxonomy of two Models 

 Generative Models 
 To model class-conditional pdfs and prior probabilities 
 “Generative” since sampling can generate synthetic data points 
 Popular models: 

 Gaussians, Naïve Bayes, Mixtures of multinomials 
 Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM) 
 Sigmoidal belief networks, Bayesian networks, Markov random fields 

 Discriminative Models 
 Directly estimate posterior probabilities  
 No attempt to model underlying probability distributions 
 Focus computational resources on given task–better performance 
 Popular models: 

 Logistic regression (MEM), SVMs 
 Traditional neural networks, Nearest neighbor 
 Conditional Random Fields (CRF) 
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Graphical Model Relationship 
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Generative Model: Naïve Bayes 

9  

 To learn a bayes classifier, we need to model P( x|y ) and P(y) 
 
 We can assume that xi’s are conditionally independent given y,  

 
 

 This is called the Naïve Bayes assumption 
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Generative Model: Naïve Bayes 
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 Learning 
 Need to estimate the following probability distributions (via counting) 

 
 
 

 
 Predicting 

 Given x =(x1, x2, ..., xd), compute p(y|x) 
 
 
 

 Apply decision theory to make final prediction of y 
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Markov Chain (Sequence Classification) 

Markov chain 
 Often we want to consider a sequence of random variables that aren’t 

independent, but rather the value of each variable depends on 
previous elements in the sequence  
 

Markov Assumption 
 A sequence of states: X1, X2, X3, … 
 The transition from Xt-1 to Xt depends only on Xt-1 (Markov Property). 

 The transition probabilities are the same for any t (stationary process) 

 

 
 X2 X3 X4 X1 
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Markov Model 
Markov Properties 

 Limited Horizon: 
 
 

    Time invariant (stationary): 

 
 Stochastic Transition Matrix 

 
 
 

 Initial states 
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Markov Model 
 Examples 

 N-gram models in NLP 
 Valid phone sequences in speech recognition 
 Sequences of speech acts in dialog systems 

 

 Bigram model 
 Bigram models are rather inaccurate language models. 

 Ex) the word after “a” is much more likely to be “missile” if the word 
preceding “a” is “launch”. 

 The Markov assumption is pretty bad. 
 If we could condition on a few previous words, life gets a bit better: 
 E.g., we could predict “missile” is more likely to follow  “launch a” 

than “saw a”. 
 This would require a “second order” Markov model. 

 

 ISLAB 14 

Markov Model 
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Markov Model 

h a p 

e t i 

start 

1.0 
0.4 

1.0 

0.3 

0.6 

0.4 

0.3 

0.4 

0.6 

1.0 

0.18  6.03.00.1             
)|()|()(),,( 23121




 
iXpXPtXiXPtXPpitP

ISLAB 16 

Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

맑음 흐림 비 흐림 ? 

Markov Model 
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Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

Markov Model 

맑음 

흐림 비 

0.3 

0.4 0.3 

0.2 
0.6 

0.1 

0.2 0.8 0.1 
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Markov Model 개념 
 내일의 날씨는 어떻게 될까요? 

Markov Model 
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 Length of the observation sequence : T 
 

 Observable states : 
 1, 2, …, N 

 

 Observed sequence : 
 O1,O2,…,Ot,…OT 

 

Markov property 
 P(Ot+1 = i | O1,O2,…,Ot-1,Ot) = P(Ot+1 = i | Ot) 

 

Markov Model 
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Markov Model 
 P(O1,O2,…,OT) 
   = P(O1)P(O2|O1)P(O3|O1,O2)…P(OT|O1,…,OT-1) 
   = P(O1)P(O2|O1)P(O3|O2)…P(OT|OT-1) 

 

맑음 흐림 비 
0.1 0.2 

P(맑음,흐림,비) 

= P(맑음)P(흐림|맑음)P(비|흐림) 

= 1.0 x 0.1 x 0.2 = 0.02 
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Hidden Markov Models 
Why hidden? 

 You don’t know the state sequence that the model passes through, but 
only some probabilistic function of it. 

 A natural extension to the Markov chain introduces a nondeterministic 
process that generates output observation symbols in any given state. 

 
 The observation is a probabilistic function of the state 

 new model is known as a hidden Markov model 
 Can be viewed as double embedded  stochastic process with an 

underlying stochastic process not directly observable 

 
 HMM is basically a Markov chain where the output 

observation is a random variable X generated according to a 
output probabilistic function associated with each state 
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Hidden Markov Models 
 Hidden Markov Model 개념 

 이상한 음료수 자판기(Crazy soft drink machine) 

Cola 

Pref. 

Iced Tea 

Pref. 

0.5 

0.3 

0.7 0.5 

start 
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Hidden Markov Model 
 Visible Markov Model 

 If, when you put in your coin, the machine always put out a cola if it 
was in the cola preferring state and an iced tea when it was in the 
iced tea preferring state 

 But instead, it only has a tendency to do this. 
 So we need symbol emission probabilities for the observations 

 
 
 

 For this machine, the output is actually independent of sj  

ijkjtitt bsXsXkOP   ),|( 1
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Hidden Markov Model 

Cola 
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자판기가 Cola Pref.에서 작동하기 시작할 때, {Lemon, Ice_t}  
순서로 음료가 나올 확률은 ? 
 
 
 
 
 
 

Cola Pref., Cola Pref. : (0.7x0.3)x(0.7x0.1)+ 
Cola Pref., Ice_t Pref. : (0.7x0.3)x(0.3x0.1)+ 
Ice_t Pref., Ice_t Pref. : (0.3x0.3)x(0.5x0.7)+ 
Ice_t Pref., Cola Pref. : (0.3x0.3)x(0.5x0.7) = 0.084 
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Hidden Markov Model 
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Hidden Markov Model 
 Notation for an Hidden Markov Models 

 T = length of the observation sequence, 
          {O1, O2,…, Ot,…, OT}      (자판기 동작 횟수)  
 N = number of states in the model (자판기 상태 수) 
 L = number of observation symbols (자판기 음료 종류) 
 S = a set of states, {s} (자판기 상태집합) 
           st = i : state i at time t 
 A = state transition probability matrix (자판기 상태변화) 
    aIJ =  P( st+1 = J | st = I ) 
 B = Observation probability distribution (음료수 확률분포) 
          bJ (Ot) =  P( Ot  | st = J ) 

  = Initial state distribution (초기 상태 분포):  i = P( s1 = i ) 
   = hidden markov model :  = P( A, B,  ) 
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Hidden Markov Model 

 Two assumptions in the first-order hidden Markov model 
 Markov assumption for the Markov chain 

 

 
 

 Output-independence assumption 
 Probability that a particular symbol is emitted at time t depends only on the state      

 
 Independent of the past observations 
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HMM Formalism 

oT o1 ot ot-1 ot+1 

A 

B 

A A A 

B B B B 

… … 

{S, L, 
 are the initial state probabilities 
 S : {s1…sN } are the values for the hidden states 
 L : {l1…lM } are the values for the observations 
 A = {aij} are the state transition probabilities 
 B = {bik} are the observation state probabilities 
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Hidden Markov Model 

 If it is not possible to observe the sequence of states of a 
Markov model, but, only the sequence of emitted alphabets 
or signals, the model is called HMM 

 
 We can guess the best state sequence; 
 argmaxS P(S | O), where O : the sequence of observed alphabet. 
  = argmaxS {P(O | S) P(S)} / P(O)  
  = argmaxS  P(O | S) P(S) 
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Three fundamental questions for HMM 

 Given a sequence of observed signals O = {o1, …, oT}  
 and model μ =(A, B, ) 
 

 Evaluation problem: 
 compute the prob. of observing P(O|μ ) this particular signal sequence. 
  

 Decoding problem: 
 determine the most probable state sequence S = s1, …, sT that can 

give rise to this signal sequence. 
  

 Learning or estimation Problem:  
 Determine the set of model parameter μ = (A, B,) maximizing the prob. 

of this signal sequence P(O| μ ). 

ISLAB 31 
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Finding the probability of an observation 

 Decoding                    
                                                               X=(X1,…,Xt+1)   
                                                                                    any state sequence 

 

 
 
 
 
 
 
 

 But, unfortunately, direct evaluation of the resulting expression is 
hopelessly inefficient. 
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Dynamic Programming 

 The general technique for the secret to avoiding this 
complexity 
 We remember partial results rather than re-computing them 

 Ex) chart parsing in computational linguistics 
 Lattice (or Trellis) 

1                2              3                                                                   T+1 

S1 

S2 

S3 

SN 

State 

Time, t 
ISLAB 34 

Forward procedure 

 forward variables 
 

 
 is stored at          in the trellis 
 expresses the total probability of ending up in state     at time t 
 is calculated by summing probabilities for all incoming arcs at a trellis 

node 
 
 Initialization 

 
 Induction 

 
 total 
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The backward procedure 

 Backward variables 
 

 
 The total probability of seeing the rest of the observation sequence 

given that we were in state      at time t. 
 Combination of forward and backward probabilities is vital for solving 

the third problem of parameter re-estimation 
 
 Initialization 

 
 Induction 

 
 total 
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oT o1 ot ot-1 ot+1 
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Combining them 
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Finding the best state sequence 

 Choosing the states individually 
 

 For each t, we would find      that maximizes 
 
 
 
 
 
 

 The individually most likely state 
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oT o1 ot ot-1 ot+1 

Decoding solution: finding best sequence 
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The state sequence which maximizes the probability 
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Viterbi algorithm (Cont.) 

1. Initialization 
 

2. Induction 
 

 Store backtrace 
 

3. Termination and path readout (by backtracking) 
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Learning problem solution 
 The values of the model parameters:  

 Using Maximum Likelihood Estimation, we want to find the values that 
maximize: 
 
 

 There is no known analytic method to choose to maximize P(O|). 
 We can locally maximize it by an iterative hill-climbing algorithm 

 Baum-Welch or Forward-Backward algorithm 
 It is a special case of the Expectation Maximization (EM) method 

 Start with the probability of the observation sequence using some model 
(perhaps randomly chosen model) 

 We iteratively calculate which state transitions and symbol emissions were 
probably used the most. 

 By increasing the probability of those, we can choose a revised model which 
gives a higher probability to the observation sequence. 

 This maximization process is often referred to as training the model on 
training data 
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Baum-Welch algorithm 

 Probability of traversing a certain arc 
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Baum-Welch algorithm (Cont.) 

 State transition probability 
 Probability of traversing a certain arc at time t given observation sequence O  

 

 
 
 

 
 
 

 
 

 Note that  
 Expectations(counts), If sum over the time index 
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Learning problem solution: Baum-Welch algorithm 

 Parameter estimation 
 Given an observation sequence, find the model that is most likely to 

produce that sequence. 
 Given a model and observation sequence, update the model parameters to 

better fit the observations. 
 

 Re-estimation : from                  , derive 
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HMM Conclusion 

 This is a general property of the EM algorithm 
 Iterating through a number of rounds of parameter reestimation 

will improve our model 
 One continues reestimating the parameters until results are no 

longer improving significantly. But this process of parameter 
reestimation does not guarantee that we will find the best model. 
 

 HMM Applications 
 POS Tagging  
 Speech recognition 
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ISLAB 

 The state transition and observation probabilities of the crazy 
soft drink machine 

46 

HMM Calculation Exercise 

ISLAB 

 Variable Calculations for O=(lem, ice_t, cola) 

47 

HMM Calculation Exercise 

ISLAB 

 Variable Calculations for O=(lem, ice_t, cola) 

48 

HMM Calculation Exercise 
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 Reestimation from Baum-Welch algorithm 

49 

HMM Calculation Exercise 
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Discriminative Model: MEM Background 
Maximum Entropy Model (MEM) 

 
 More widely known as multinomial logistic regression 
 Belong to the family of classifiers known as the exponential or log-

linear classifiers 
 Extract some set of features from the input and combine them linearly 
 Linear regression and logistic regression 
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Discriminative Model: MEM Background 
 Linear Regression 

 Regression vs. Classification 
 Output of regression: real-valued 
 Output of classification: one of a discrete set of classes 

 
 An example for regression 

 Real estate ads: lower prices (fantastic, cute, or charming), higher prices (maple or 
granite) 

 

 

ISLAB 52 

Discriminative Model: MEM Background 
 Linear Regression 

 
 
 
 
 
 
 
 
 
 

 Prediction score: 
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ISLAB 53 

Discriminative Model: MEM Background 
 Linear Regression 

 General form: 
 
 
 
 

 Learning in linear regression 
 Each observation x would have a feature vector f, and we would train the weight 

vector w to minimize the prediction error from 1 or 0 
 Sum-squared error 

 
 
 
 
 

ISLAB 54 

Discriminative Model: MEM Background 
 Logistic Regression 

 Need to change the real-valued outcome of linear regression into 
classification (one from a small set of discrete values) 
 Probabilistic classification for binary classification 

 
 
 

 Problem: The left hand lies between 0 and 1 but the right hand lies between - 
and . 

 Solution: Using odds (ratio of two probabilities) and logit function (log of the odds)  
 

 
 
 
 

 
 

ISLAB 55 

Discriminative Model: MEM Background 
 Logistic Regression 

 To estimate the logit of the probability rather than the probability              
 
 
 
 

  

 
 

 
 

 

ISLAB 56 

Discriminative Model: MEM Background 
 Logistic Regression 

 Logistic function                                           *        
 
 
 
 

 This function maps values from  to lie between 0 and 1. 

 Classification of logistic regression 
 
 
 
 
 

 This is the equation of a hyper-plane (a generalization of a line to N dimension)  
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ISLAB 57 

Maximum Entropy Modeling 
Multinomial logistic regression 

 From binary value (0 or 1) to many discrete values 
 Called MaxEnt in speech and language processing 

 

 
 
 
 

 
 

 

ISLAB 58 

Maximum Entropy Modeling 
 Indicator function 

 A feature that takes on only the value 0 and 1 
 Ex) POS tagging 

 

 
 
 
 

 
 

 

ISLAB 59 

Maximum Entropy Modeling 
 Indicator function 

 Ex) POS tagging (Continue) 
 

 
 
 
 

 
 

 

ISLAB 60 

Maximum Entropy Modeling 
 Classification in MaxEnt 

 A generalization of classification in (Boolean) logistic regression 
 MaxEnt naturally gives us a probability distribution over the classes  

 

 
 

 Any kind of complex feature has to be defined by hand 
 Ex) 
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ISLAB 61 

Maximum Entropy Modeling 
 Learning in MaxEnt 

 To find the parameters w that maximize the log likelihood of the M 
training samples 
 
 

 Important aspect is a kind of smoothing of the weights called 
regularization 
 To penalize large weights: a MaxEnt model will learn very high weights that overfit 

the training data 

 
 

 

 

ISLAB 62 

Maximum Entropy Modeling 
Why We Call It Maximum Entropy 

 We want to assign a tag to the word “zzfish”  
 No constraint would be the equiprobable distribution. 

 
 

 Learn only one fact: the set of possible tags is NN, JJ, NNS and VB 
 
 
 

 Learn one more fact: two constraints 
 

 
 

 

ISLAB 63 

Maximum Entropy Modeling 
Why We Call It Maximum Entropy? 

 We want to assign a tag to the word “zzfish”  
 Learn one more fact : three constraints 

 
 
 
 

 The optimization problem of finding this distribution as follows: (Berger et al. 1996) 

 
 

 


